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New Approach to Comparison of Search Methods 
Used in Nonlinear Programming Problems 
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Abstract.  This paper is concerned with the problem of investigat- 
ing the properties and comparing the methods of nonlinear pro- 
gramming. The steepest-descent method, the method of Davidon, 
the method of conjugate gradients, and other methods are investigated 
for the class of essentially nonlinear valley functions. 
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1. S t a t e m e n t  of  the  P r o b l e m  

About 100 methods are available today for the computer-aided 
search for the extremum of a nonlinear function of many variables; 
new methods are forthcoming. To solve his problem, an engineer has 
to select one of these methods. The problem is made unwieldy by the 
fact that there is no yardstick for the applicability of methods to reaMife 
situations. 

Nonlinear programming methods can be compared in two ways. 
The first approach can be termed analytical and is to prove that the 
methods under consideration converge for a certain subclass of nonlinear 
functions. Then, a comparison criterion is suggested, which in most 
cases is the convergence rate. Analytical expressions for the criterion are 
compared, and the relative advantages of the methods are determined. 

In spite of its obvious superiority, this approach is hard to apply, 
because of the mathematical difficulties involved. The convergence of 
of many methods has been proved for only sufficiently simple, quadratic 
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or convex, functions (Ref. 1) or with some stringent constraints imposed 
on the functions. The convergence rate for strictly unimodal functions 
(Ref. 2) has not been found for any method. 

The second approach can be termed experimental. The perfor- 
mances of methods in terms of some criterion (such as the number of 
function evoluations, the convergence rate, the number of iterations, etc.) 
are compared by using certain test functions. The literature has reported 
10 to 20 test functions extensively used in such comparisons (Refs. 3-5). 

For all the practical value of the experimental approach, the results 
are often dependent on the test functions themselves. Furthermore, for 
the same test function, the relative advantage of a method depends on the 
initial point selected. Both facts impair an objective evaluation of the 
methods. 

This paper proposes a middle-way approach to the comparison of 
nonlinear programming methods. The objective of the paper is to 
compare some nonlinear programming methods for a broad class of 
unimodal functions, a class incorporating all known test functions. 

The problems discussed are unconstrained minimization problems. 
Penalty functions (Ref. 6) help in reducing constrained minimization 
problems to these problems. 

Section 2 describes the nonlinear programming methods, and 
Section 3 discusses the class of functions under consideration. Sections 
4--7 analyze the properties of the methods for two-dimensional functions 
belonging to the class under consideration. Section 8 presents the basic 
ideas of our approach to the comparison of methods, and Sections 9-12 
give the results of the comparison. Section 13 contains the experimental 
comparison of the methods for test functions of various dimensionality, 
and Section 14 summarizes the conclusions. 

2. S e a r c h  Methods 

This section will describe the search algorithms which can be 
regarded as belonging to one class, because all of them have the following 
properties. 

(a) The problem is to find the local minimum of the function 
f(x) of the n-vector x. A point x* is to be found such that g(x*) = 0, 
where g(x) is the gradient off(x) .  The search is iterative. 

(b) At each iteration, a direction leading to a decrease of the 
function is selected, and a minimum along that direction is determined. 

(e) The values of f(x) and g(x) alone are used in the search. 
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Assume that the procedure used in the one-dimensional search is 
the same in all the algorithms and that it leads to the accurate deter- 
mination of the minimum; in other words, the least positive root c~ is 
determined by the equation 

L ( ~  + ~p~) = o, O) 

where f ( x )  is the function to be minimized, x~ is the initial point along 
the ith direction, and Pi is the ith direction of minimization. 

With this assumption, the search algorithms are different in the 
directions selected. Therefore, the assumed criterion for the efficiency 
of a method can be defined as the number of minimization directions 
required to reach the vicinity of the extremum. 

The paper will be concerned with the following search methods: 

(i) steepest-descent method (SD, Ref. 2), 

(ii) accelerated method of parallel tangents (APT, Ref. 2), 

(iii) conjugate-gradient method (CG, Ref. 5), 

(iv-) Davidon's method (D, Ref. 7), 

(v) general form of variable metric algorithms (VM, Ref. 8). 

Let us indicate how these methods select the search directions: 

(SD) P~ = --g~, gi = grad f(x0; 

(APT) P 2 i - 2  = - - g 2 i - 2 ,  

P2i = - -g° . i ,  

P21-1 ~ X 2 i - 1  - -  X 2 i - 3  , 

with the first two steps made along the antigradient; 

(CG) Pi+~ = --g~+~ + (gr+~gi+a/g~rg~)P~ ; 

(D) Pi+l -~ - - H i + l g i + l  , 

H i+  1 -~ H~ @ A i @ B i ,  

A i = rricrir/eqryi, 

B i  = - - H i y ~ y l r H i / y i r H i y i  , 

Y i  = gi+l - -  g i  , 

O'i  : "%'i+1 - -  X i  : °~ iP i  , 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(s) 

(9) 

(lO) 

(11) 

(12) 
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where c~ is the stepsize obtained by minimizing the function along the 
direction selected and where H i is a symmetric and positive-definite 
matrix, if H0 is also symmetric and positive definite. 

The  Davidon method belongs to the class of variable metric algo- 
rithms, which have the form 

p ,  = - - H J g ~  , 

where the matrix H i is constructed in a specified way. Le t  us consider 
those variable metric algorithms (Ref. 8) for which 

(VM) l l i =  Hi_I + AH~_I ,  (13) 

A I t  i AX r r = p ( i _ l y i _ l / y ~ _ l A g ~ _ l )  - -  Hi_lAgi_lzr_z/zr_~Ag~_l, (14) 

Ax~-i = x i -  x~- l ,  (15) 

Agi-1 -= gi - -  g i -1 ,  (16) 

Yi-1 = ClAXi-1 @ ceHr-aAg~-l , (17) 

zi-1 = klAxi-1 q -k~Hr- lAg i -1 .  (18) 

By varying the parameters p, c I , c 2 , k 1 , k 2 , we will have different 
algorithms. For pc I = k a = 1 and cu ----- k 1 = 0, we obtain the Davidon 
method; for Oct = k t = 1 and c 2 = k 2 = 0, we obtain the McCormick 
method;  and for pc1 = k 1 = 0 and c~ = k 2 = 1, we obtain the Pearson 
method. 

For quadratic functions, the D-method,  the CG-method,  and the 
VM-method  converge within n steps, where n is the number  of variables; 
the APT-method  converges within 2 n -  1 steps, and the SD-method 
converges at the rate of geometric progression. 

3. Class of Functions 

The  behavior of the methods is studied for the class of differentiable 
unimodaI functions. One specific feature of this type of functions is 
valleys. The  valley is described best in geographical terms (rather than 
mathematical terms): its surface is represented by a mountainous terrain 
with a river flowing in the gorge. The valley bottom can be regarded as 
a river bed, and the valley generating line as the direction of flow. A 
valley can be characterized by the steepness of the walls, the width of the 
bottom, and the slope along the river, i.e., the rate at which the valley 
bottom decreases along the generating line. The  valley bottom and the 
river bed can be either straight or curving. 
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The search is known to be most difficult in the case of a narrow, 
gently sloping and curving valley with steep walls. This is exactly the 
case for most of the now widely-used test functions. Usually, the values 
of these functions vary widely along some directions (normal to the valley 
bottom) and weakly along some other directions (along the vailey bottom). 
The contour lines of these functions look like bananas, pears, open rings, 
and so on. For these functions, the number of bends in a valley is not 
too great. 

Let us refer to the class of nonlinear unimodal functions with 
curving valley without many bends as class V, and let us consider only 
one element in this class. The search for an extremum of a function 
f ( x )  ~ V can be staged as follows. 

(i) Descent into the valley. At this stage, the value of the function 
and the gradient norm fall sharply. Numerical experiments lead to the 
conclusion that, as a rule, the descent takes no more than n steps. 

(ii) Turn along the valley. Depending on the method employed, 
this stage is more or less successive learning or change of the descent 
direction into the direction along the valley bottom. In the case of 
successful approximation of the valley, this stage is characterized by 
large angles made by adjacent directions of minimization. 

(iii) Advance along the bottom of the narrow, gently sloping valley. 
This stage involves insignificant decrease of the function. If  the ith 
direction of search runs along the bottom of the narrow, gently sloping 
valley, then the ith point and the (i ~- 1)th point lie either on opposite 
walls or both on the bottom. If both points lie on the walls, then we can 
approximately write 

gi+l ~ --gi. (i9) 

If  the ith direction of search is at a large angle with respect to the 
generating line of the valley (that is, Pi = --g~), then the (i + 1)th point 
stays at the valley bottom and 

1i gi+l l] ~ il gi ]]" 

(iv) Search in the vicinity of the extremum. 
function is nearly quadratic at this stage. 

(20) 

As is well known, the 

To  have a physical picture of what the methods do, the behavior of 
all algorithms was analytically studied at each stage for two-dimensional 
functions of the class V. However, the qualitative conclusions will be 
shown to be equally valid for functions of higher dimensionality. 

8o9/I3/6-a 
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4. Cer ta in  P rope r t i e s  of  the  S teepes t -Descen t  M e t h o d  

In accordance with (2), the selection of the direction in the SD- 
method does not depend on former information and depends only on the 
point where the descent starts. 

This nonadaptive approach may prove successful for those points 
where the nature of the function changes abruptly, so that previous 
information does not help us in getting closer to the minimum. At the 
very beginning of the search, a step along the antigradient is also con- 
venient because, without knowledge of the behavior of the function, 
another selection is risky and can entail considerable departure from the 
extremum. 

Subsequent to the descent stage, for the straight or smoothly 
curving portions of the valley bottom, the SD-method leads to search 
trajectories which are sawtooth curves. The progress toward the minimum 
is very slow. This practically leads to cycling. 

5. Cer t a in  P r o p e r t i e s  and Modifications of  the  APT-Method 

The APT-method (Ref. 2) is intended for searching the minimum 
of a function having concentric ellipsoidal surfaces of equal level. In the 
two-dimensional case and for a quadratic function, two steps are taken 
along the antigradient; then, one step is taken along the direction con- 
necting the last point found and the initial point of the search. 
Consequently, a descent to the valley bottom is made from two points on 
the walls, and then a step along the bottom is made. In the case of a 
quadratic function of two variables, this direction leads to the minimum 
point. 

In the case of a curving valley, three steps do not suffice to find 
an extremum; therefore, another iteration is needed. Therefore, the 
search direction along the antigradient leading to the valley should be 
used and then the last two points on the valley bottom should be con- 
nected to obtain a new direction of search. 

For valley functions, the APT-method is known to converge 
poorly (Ref. 2), because the selected directions do not always yield 
a reduction of the function. Therefore, it is reasonable that, if pirg~ >~ O, 
one resets 

Pi = - - g i "  (21) 

Also, we have experimentally established that, for unimodal functions 
of the class V, the method converges much quicker if restart is intro- 
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duced; this implies that, at a certain point, the entire former information 
is forgotten and the search restarts anew. 

Below, we will discuss the APT-method with restart after every 
n q- 1 steps and with correction of the direction by (21). 

6. Some  Proper t i e s  of  the CG-rVIethod 

By virtue of (6), Pi+l (a subsequent direction in the CG-method) 
can be represented as the sum of two vectors: the vector of the preceding 
direction Pi and the gradient in the (i @ 1)th point, both vectors being 
taken with certain coefficients. Because the coefficient of Pi is greater 
than zero, Pi+~ can turn at an angle not exceeding rr/2 relative to Pi.  

Besides, the coefficient of Pi depends only on the norms of gt and 
gi+l but not on their directions; gi+~ is included in (6) with a constant 
coefficient of 1. 

In motion along the bottom of a straight valley, gi+l corrects Pi,  
so that Pi+~ is a good approximation to the valley direction. When the 
valley turns, the coefficient ofp~ does not decrease; in other words, there 
is a trend to maintain the previous direction. This fact indicates that the 
method is inertial and ill-adapted to variations in the nature of the 
function. 

The poor performance of the method was revealed by numerical 
verification in the case of the Rosenbrock function (Ref. 5). It  was 
suggested (Ref. 5) that the method should be restarted periodically 
after r iterations. 

To preserve quadratic convergence, r should be at least to n. On the 
other hand, r should be as close to n as possible to improve flexibility. 
In Ref. 5, the authors selected r = n + 1. Selection of r = n is equally 
justified. 

7. Cer t a in  P rope r t i e s  of  the Dav idon  Method 

Theorem 7.1. Each subsequent direction in the Davidon method 
can be represented as a linear combination of two vectors, the antigradient 
vector at the initial point of the direction and the vector of the preceding 
search direction. 

P roof .  Using (7)-(12), one can write 

H~+lgi+l = (Hi + Ai @ Bi)gi+l = Higi+~ + Bigi+l. (22) 
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It is evident that 

because 
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A i g i . :  -= O, (23) 

~irgi+l = 0 (24) 

in the precise determination of the min imum along the direction. Hence, 
it also follows that 

girHigi+l := 0. (25) 

From (22), it follows that 

H¢+:gi+: = Higi+: - -  H~(g¢+, - gi)(gr+: - g~r)H, g~+:/(gr+: _ g r ) i t t  (g~+: _ g~) 

T T = t t igi[gi+lHigi+:/(gi+lHigi+ ~ + girHigi)] 

+ H~gi+:[g~rH~gi/(gr+:H~gi+: + g~rHigi)]. 

Denote 

Then,  

girHig~ := h ,  

T gi+:Hig~+: = m~. 

(26) 

(27) 

(28) 

(29) Hi+:gi+: = Higimj(l< + rot) + Higi+:Id(li  + mi). 

Considering that gT+:Hig i = O, one can write 

Higi+ ~ = t l g i +  1 @ t ~ H i g  i . (30) 

Multiplying (30) by gir+: gives 

= t r (31) mi ~gi+lg<+: , 
T t: = mi/gi+lgi+:. (32) 

Premultiplying (30) by g f  gives 

girHigi+: = tlgirgi+x -t- t2g i rHig i ,  (33) 

t~ . . . .  t:girgi+:/girHigi = --(mi/g~+:g,+:)(girg,+:/li). (34) 

Consequently, 

Hi+lgi+l = H~g,mi/(mi -}- li) 

m r + [gi+: i/gi+:gi+l - -  Higl(mdli)(gr+:gi/gr+igi+:)] ld(m~ -}- lt) 

= Htgi{md(m~ -t- l~) - -  [mi/(m f + li)](gr+lg~/gr+:g~+l)} 

T -+- g~+:mili/(mi q- li)gi+:gi+: , (35) 
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and then 
' l r 1 r r ~- - -  gi+lgi) gi+lgirHigi] P~+I [mi/(mx + x)g~+ig,+lj[Pi(gi+:tgi+x 

r ~= k~+~[p~(g~+lg~+ 1 _ g r  g~) r + g~+l(pi gi)], (36) 

where 
T 

hi+ 1 = m~/(m~ ~- li) gi+lgi+t , ki+ t > 0. (37) 

According to Eqs (7)-(12), the matrix H~ includes all the preceding 
matrices H j  , j  = 0, 1,... ,  i - -  1, or allows for all the preceding values of 
the gradient. 

The coefficient of the vector Pi depends on only two values of the 
gradient (gi and gi+l) and can be negative if 

g~+igi > 0. (38) 

Let us consider the variations of the coefficients of the vectors 
p~ and g~+l in minimizing a valley function. The coefficient of Pt can 
change sign depending on the vectors gi  and gi+l and the angle between 
them. In the descent to the valley or with an abrupt change of the valley 
direction, the condition (38) holds. According to (36), this can lead to 
an abrupt change of the subsequent search direction. This fact gives 
the method f l ex ib i l i t y  and its ability to respond quickly to changes in the 
function shape. 

At the third stage of the search, in the narrow valley, the coefficient 
of Pi is positive and nearly maximal if (t9) is true. Since 

T ~ - ~ k  T T T 
Pi+~Pi i+lPi Pi(gi+lgi+l - -  gi+lgi), 

then pr+xpi > 0; consequently, neighboring directions of minimization 
make an acute angle. 

The coefficient of the vector gi+l is always positive and depends 
only on the angle between the vectors H i g  i and gl .  If the ith direction 
of minimization does not deviate greatly from the antigradient (which is 
possible in the descent to the valley or in a change of the valley direction), 
then this coefficient is maximal. This fact greatly affects the subsequent 
direction of minimization by making it turn  along the valley bottom. In 
moving along the straight valley, this coefficient is small, because the 
gradient is nearly normal to the bottom of the narrow valley. 

8. A p p r o a c h  to the Comparison of Methods  

It is clearly impossible to devise a searching method which is 
optimal for the entire class of unimodal functions. For each method, a 
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function can be found for which it converges well, and yet another 
function can be found for which the method does not converge. 
For each particular problem, an algorithm can be originated so that it 
takes into account all of its properties and converge faster than most 
effective methods. Therefore, in the experimental approach, the methods 
are compared through several typical functions. The specific features 
of these functions, such as the availability of narrow, gently sloping 
curving valleys, were allowed for in the test functions chosen by 
Rosenbrock, Powell, Fletcher, and others skilled in the art of searching. 
Traditionally, the legitimacy of each search method is verified through 
these test functions. 

As already noted, the estimation of the value of such methods is 
relative because, to a considerable degree, it depends on the choice of the 
nominal point initially selected. For a specific method and test function, 
the initial point can be lucky or unlucky. 

We now suggest another approach to compare the algorithms. 
Let the minimization directions from point A be defined for two methods 
of nonlinear programming (Fig. 1). The direction AD with its minimum 
at the point D is given in the first method. The point C which is on the 
straight line AD is defined in the second method through two successive 
steps AB and BC. 

If  f(D) <~f(C), then we may think that the first method gives a 
better advance toward the extremum in the neighborhood of point A 
than the second method does. 

Indeed, after the minimization in one direction, the first method 
guarantees a function value at least as good as that given by the second 
method after the minimization along two directions. A unimodal function 
can have several extremums along the segments AB, BC, AD. However, 
the procedure of search along a direction is developed so as to reach 
the nearest of them. Thus, an explicit or implicit assumption is made that, 
in the neighborhood of each point in a chosen direction, the function 
under study is strictly unimodal. But it is exactly when this assumption 
is not valid, that stumbling blocks for all of the methods under considera- 
tion appear. 

Fig. 1. Choice of the minimization directions at point A. 
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If the above assumption is true, then the nearest minimum is along 
the directions AB, BC, and AD, and the function cannot have more than 
one minimum along the segment AC. 

This way of comparing nonlinear programming methods may be 
termed local, rather than global. As will be shown later, the conditions 
under which one method is superior to another depend on the search 
stage. Therefore, the proposed way of comparison reveals the local 
superiority of one method over another, which is true only for a specified 
stage of the search. 

9. C o m p a r i s o n  of SD-Method  and  A P T - M e t h o d  

The first two steps of these methods coincide. Indeed, 

po ~ - -  p ~  - - g o ,  p ~  = p ? P ~  = - g ~ .  

Therefore, if both algorithms begin the descent from the same point, 
they do it identically. Beginning with the third step, the methods choose 
directions in different ways. Since the APT-method works with restart, 
we may think of SD and APT as equivalent at the stage of turn. Now, 
let us proceed to the third search stage, the movement along the narrow, 
gently sloping valley. Let us see when one method is better than another. 
Comparing the methods by the above approach, we define the conditions 
under which the second APT direction can pass through the final point 
of the second and third SD-steps. 

Let 
' S D  ~2~aPT = ~,(pSD + P3 )' (39) 

where 
o" "1 A P T  

2 o 2  ' 

3 0 8  " 

(40) 

(41) 

(42) 

Here, 7 is a proportionality coefficient, 7 > 0. 
Therefore, 

~ S D  S D  ~ S D g S D ~  r2~mT=7(-- ~ g2 -- ~ ~3 ,' (43) 

that is, point x 4 determined by the SD-method lies on the straight line 
p~P~, in addition to points x o and x 2 . Since these three points are obtained 
when descending into the valley along the antigradient and are on the 
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same straight line, we are at the straight section of the valley. Thus, the 
APT-method chooses the direction along the valley bottom and is 
superior to the SD-method when advancing along straight sections of the 
valley bottom. 

Let us elucidate the conditions under which SD is locally better 
than APT. Let the second SD-direction pass through the final point 
of the second and third APT-steps. Then, 

where 

Therefore, 

(44) 

pArT = _~aPT,a~T3 oa • (45) 

p~PT = ~APTI~'APTz ~Z -- r~Z''SD"SD~;z ' (46) 

that is, the gradients at points x 2 and x 3 form an acute angle, which can 
happen with a sharp turn of the valley. 

Thus, along the straight sections and with gently sloping valley 
turns, APT advances to the extremum faster than SD. But, in a sharp 
turn, SD may happen to be superior to APT. Since we consider a valley 
with few turns, this situation cannot arise too often. Besides, the intro- 
duction of a guaranteed relaxation and restart after the (n -}-, 1)th step 
according to (21) for APT improves the method considerably at the 
valley turns, because the importance of the gradient in the selection of a 
direction increases. In the neighborhood of the extremum, APT con- 
verges in 2 n -  1 steps and SD converges at the rate of geometric 
progression. 

Consequently, in dealing with functions belonging to the class V, 
the APT-method is on the whole more effective than the SD-method: 
at the first and second stages, these methods are equivalent; and, at the 
highly important stage of advancement along the valley bottom, APT 
is superior to SD. 

10. Comparison of APT-Method and CG-Method  

The first direction is chosen identically by both methods. They are 
considered to be equivalent when descending. Unlike the CG-method, 
the second APT-direction always forms the angle ~r/2 with the first 
direction. Nevertheless, the methods are roughly the same when turning, 
because they both use a restart. 
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Now, let us proceed to the third search stage. Let  us consider the 
conditions under  which CG can be locally superior to A P T  when 
advancing along the valley. Let  the first direction of CG pass through 
the final point of the first and second APT-steps .  

Because 
poCO = p~PT = --go'  (47) 

PAlt'T = - -g l '  (48) 

p C °  __~ __ (g/g~/gorgo)go __ g~ ,  (49) 

p A P T  = - % g o  - c'i~P~g~, (5o) 

~AeT,Aer = ;epco, (51) ~ ? ~ p 2  ~ + ~ ~ 

then 

_ _ ~ % _ _  ~ , . % (%go + aAprga) = --7~c°[(g~rg~/gorgo)go n-g~], (52) 

and because 

then 

Consequently,  

gorgl = 0, (53) 

~x 2 tx I ~-- ~i CG, 

.oC~ vT ----- WC°(g:~ , : /gorgo) .  

(54) 

(55) 

A P T  T ~ T 0% (go go/g1 gl) = ~ C  °, (56) 

~ P T +  ~AP~APT AP'r r / r (57) 
2 J_ ~- % %  (gogo,gl gl)" 

From new on, the index A P T  can be omitted. 
By virtue of (20), we have 

i) gl II < }1 g0 t]. (58) 

Besides, it is natural to suppose that the advance in descending is smaller 
than the advance along the straight valley section, that is, 

~o ii go F] < c% '~F gl  IF. (59) 

From (57), it follows that 

-1(1 + %) ~- C~oa2 I[ go Iiz/l! e l  il z, (60) 

(1 -]- %)/% -- (%/~) ]] go 112/11 gl }',K (61) 
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From (58), Ineq. (59) may change sign, and we obtain 

% II go I[ 2 > ~ IL g~ Y, 

which does not contradict (61). Thus, (61) may hold when searching 
along the straight valley sections, that is, CG is superior to APT when 
searching in the valley. 

Then, it is necessary to ascertain whether APT is locally superior 
to CG. Let the first APT direction pass through the final point of the 
first and second steps of CG. Then, 

.ŷ  APT..'.APT ~ ~ CG.,~CG @ ~ CG.,~CG. (62) 

and, muhiplying both parts by P0 = --go, we obtain 

~co~rco~ + ~cc~rco~, = 0. (63) 
1 rl I~0 2 -r2 I~0 

Such a relation of three successive directions of minimization can take 
place when the valley turns abruptly. In this case, it must be remembered 
that the methods coincide at the null step (the step along the antigradient). 
CG always makes the first step from the quadratic approximation of the 
given valley section. The first step along the antigradient in the APT- 
method can give better results than CG only when the valley direction 
changes sharply and CG deviates from this direction considerably. If 
the valley direction does not change sufficiently often, which is the case 
for functions of class V, then CG is superior to APT at the stage of 
advancing along the valley bottom. 

At the last stage, the performance of both methods is almost equal. 
Hence, CG is generally more effective than APT for functions of class V, 
since CG is superior to APT at the important stage of advancing along 
the valley bottom. 

11. Comparison of CG-Method with D-Method 

Theorem 11.1. The processes of search for an extremum by the 
D-method and the CG-method when moving from the same initial point 
coincide along the first two directions for any nonlinear function. 3 

Under (6)-(12), the first directions of motion defined by both 
methods coincide, specifically, 

P0 = --go. (64) 

a As shown in Ref. 9, bo th  me thods  coincide comple te ly  for a quadra t ic  funct ion;  s ta r t ing  

f rom the  same point ,  they  choose the same direct ions.  
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Therefore, after the minimization along the first direction, the same 
vector is used to find the second direction. According to (7)-(12), we have 

--Pl D -~ Htgl -- (Ho @ Ao + Bo)gl -= gl 47 Bogl 

= (gorgog, + glrglgo)/(gorgo + gJ&); (65) 

and, according to (6), we have 

_pCO ....... (g, Tgl/gorgo)g o + g, -- (gorgogl + glrglgo)/gorgo . (66) 

Hence, pl  9 = K p f  ~, where K is a positive number. 
The subsequent directions of motion defined by D and CG may 

prove to be different. Let us consider the conditions under which the 
periodic restarting used in the CG-method allows one to choose luckier 
directions than those defined by the I)-method. Let the j th  directions 
start from the same point in both methods, and let the j th  direction for 
CG coincide with the antigradient. CG has an advantage when its 

j th  direction passes through the final point of the (j + 1)th direction 
defined by D. We have 

7gJ = q, Hjgj -i ~j+~Hj+~gj+,. (67) 

Multiplying (67) by J s-1, we obtain 

T T ~J-l~J + ~J-~3"+1 == 0. (68) 

From (68), it follows that two out of three subsequent minimization 
directions pj._,, pj., pj+, form an obtuse angle. Then, we can draw the 
conclusion that the choice of the antigradient direction may be better if 
the search direction changes greatly when D is used. 

We define the conditions under which the D-method provides 
selection of better directions than the CG-method. Let the j th  directions 
start from the same point in both methods. D has an advantage when the 
j th  direction defined by this method passes through the final point of 
the (j  q- 1)th direction defined by CG. We have 

T T yHjg~ = %gj 47 ~J+~[(g~+lg~+l/gJ gJ)gJ + gJ+,], 

that is, 
r r . (69) yH~gj = [(~jg rg~ + eg+lg~+~gj+i)/g j g~]g5 q- %+,g~+x 

Since r Pj-lg~ = 0 and gTgi+* = 0, we can write 

gJ+a = ?tp~_, , 

where ;~, )t # 0, is a constant. 

(70) 

Substituting Eqs. (36) and (70) into 
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Eq. (69), we obtain 

~,k~[pj_t(g rgj _ gr g:) r H 
- -  ( g J - 1  ~-igJ-1)gJ] ( 7 1 )  

= --1~J+~PJ-1- [(~Jgfg: -? c%lgr+ag~+x)/g~rgj]gj. 

On the right-hand and left-hand sides of Eq. (71), there are the 
same vectors g~ and P.~-I • The coefficients of these vectors on the right- 
hand side of Eq. (71) are unknown and cannot be compared exactly 
with those on the left-hand side. 

However, consider the conditions under which Eq. (71) holds. 
The vector gj with negative coefficients enters both sides of the equation. 
Moving along the narrow valley with condition (19), the coefficient of 
Pj-1 on the left-hand side is greater than zero. At the turn of the valley, 
it can be negative. The sign of the coefficient of pj_~ on the right-hand 
side depends on the sign of A. Let us consider the succession of vectors 
P : - I ,  - -g j  --g:+l If r , • - -Pj- lg j+l  < O, which is characteristic of the 
valley turn, then h > 0, and the coefficient ofp:_~ is negative. Along the 
straight sections, 

--pr_lg:+ 1 > O, 3, < O, 

and the coefficient of Pj-1 is positive. 
Hence, on both sides of Eq. (71), the coefficients of the same vectors 

have the same signs when searching in the narrow valley. The squared 
lengths of vectors on the left are related by 

T r H ~. T T T g :-~_, T T ~ T T 2 
g~ gJ(g~-I :-lgJ-1) /P:-lP~-I(g~ g~ --  g~-~g~) == g~ g~(g:-aP:-~) /4p~_~p~_~(g~ g:) 

= (1/4)(gr-~P~-~/lI gJ Ii" I1P:-~ ll) ~. 
(72) 

When moving in the valley, this value is small, because of the assumption 
that the vector p~_~ is directed along the ravine, and g~_~ is perpendicular 
to it. 

On this assumption, the advance in the descent is much smaller 
than the motion along the straight ravine, i.e., 

r r i!. (73) ~ !1 g~' [1 ~ %'+~ II (g~+~g~+~/g~ g:)g~ -k g~+~, 

Thus, 

But 

T ~ T Ogj "v/(gj rg:) ~ 0~j+ 1 ~ / [ ( g , + l g J + l )  /gJ g~ g~agJ+a]. 

c~j+l ~¢/[(gr+lg~+a)2/gjr g: + gT+~g:+l] 

T T = ~+1 ~/(gj+lgj+l) ~/'(gr+lg~+l/gjrg~ + 1) ~ ~J+l ~/(gj+lgJ+l), 

(74) 

(75) 
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because of (20). Consequently, 

g(gj+~gJ÷l), (76) 

despite the fact that (20) holds. 
Let 

T ~ / T o~/o%1 = o (~(g~+ig?+l)/V (gJ g~)). (77) 

Let  us consider the squared lengths of the vectors on the right-hand 
side of Eq. (71). Their  ratio is 

T T 12  2 T gjr&[(,,gjrgj + %+tgj+lg~+~)/gJ g,J /(~J+~gJ+,g,+,) 

T T " T T 2 = (gJ g:/g:+*g:+l)(eeJ/~+l + g:+lgJ+*/g: gJ) 

- -  T T T / T f O~ -- (g~ g/gj+lgj+l)(gJ+lg,+l~gi g'J)[(%/ J+l) v'(gJ rgs/g~+:gJ+l) 

r r ?2 r r 
~" gs+~&+l/g~ g~ + ~/(gj+lgj+l/gj gJ)= 

But ]1 gj+x ]]/l] gj II is a small value. Therefore, in the advance along the 
narrow valley, Eq. (71) holds. 

The  results obtained give one a qualitative comparison of the 
methods under study. 

(i) By virtue of Theorem 7.1, at the first search stage both methods 
coincide. 

(ii) At the second search stage, CG can prove to be superior. 

(iii) At the third search stage, D possesses an unquestionable 
advantage. This  method is fit for the advance along the valley bottom 
providing that the valley bottom generating line is not very tortuous. 

(iv) At the fourth search stage, both methods are of equal worth, 
since they are quadratically convergent. 

12. Variable Metric Algorithms 

In ReL 8, a group of methods is considered that depends on certain 
parameters; for special values of those parameters, the Davidon, Pearson, 
McCormick, and other algorithms are obtained. The  group belongs to 
a broader class of variable metrics algorithms (ReL t0). 

We show that, when n = 2, .adgorithms I-VII of Ref. 8 choose the 
directions identically and they coincide in the case of precise mini- 
mization along the search direction. 
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Le t  us consider  a class of  a lgor i thms of  the  f o r m  (13)-(18).  
T r a n s f o r m  the  express ion (13) as follows: 

- -P i  = Hirgi  = H~-lgi  + AH~- lg i  = H~-lgi  + PYi- lAx~-xgJYr-lAgi-1 

k " r  A "A r ~ r  , r A - - ( k x A x ~ _ ~ - k  ~.tli-1 gi-1) g i - l t l i - lg~ /&-~  g i -a .  (78) 

Since Ax~_ lg i  = O, t hen  

A r r A OYi-1 x i - lg i /Yi -1  & - I  = 0 

and  

- -Pi  = H~_~g~ - -  (Ag~_~H~_lgi/z~_,Ag~_l)(k,Ax~_ ~ -}- k~It~_agi - -  k2H~_~gi_,) 

_ _ _ r r r A - -  (1 ku AgY_:Hr_:g~/zr_lAg,_oHr_,g~ ( A g t - l l t i - , g i / z i - 1  gi-1) 

× (k ,~ i - iP i - ,  + k=pi_,) 

(1/zLIAg~_~)[(zLIAgi_,  __ r r r == k 2 A g i _ l H i _ l g i ) H i _ l g  ~ 

- -  (kiwi_ ~ + k~)Agr l H r  ~gip~_~]. (79) 

Also, we can wri te  

H r ~ g ,  = ag, + bp,_~ , (80) 

whe re  a and  b are constants .  L e t  us f ind a and  b. W e  have 

r n r  T T r gi i - ig i  = agirgi , a = gi H~'-igi/g~ g~ ; 

and  
r H r = a  r b r 

g i -1  i - l g i  "gi-lgi + ~gi- lPi-1 ,  

= r H r r r H r  r r r 
b (g~-, i-~g~ g,  g~ - -  g,  i - lg i  g , - !g , ) / (g ,  g,)(g,-~P,-x).  

L e t  B = 1/zr_,A&_~. Subs t i tu t ing  (80) into (79), we have 

= h A  r H r  .. rHr  ~, r .  - -Pi  B{ (Z~- lAg i -1 - -  2 gi-1 i - lg i ) lg i  ~- lg t /g ig i )g t  

q- (z~_,Agi_ 1 - -  k2Ag~_lH~_xgi) 

r H r r r H r  r r r 
× [(g~-, ~-~gi g~ g~ - -  gi ~-~g~ &-*&)/(g~ g3(g~-~P~-*)]P~-~ 

T T 
- -  Agi_~Hi_igi(k,c~,_~ + ku)P,-x}. (81/ 

Cons ider  the  coefficient of  the  vec tor  g~. W e  have 

(kl AxT lzJgi--X ~- k2Ag r I H i  1Agi 1 k T r T T T . . . .  - -  ~Agi-~Hi-~gi)(gi H~-xgdgi gi) 

= - - ( p r _ ~ & _ d ( k ~ _  1 + k~)(g~rIlrlgdg~rg~ ). (82) 
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Transform the coefficient of the vector Pi-~ as follows: 

k "" r H r r rHr  r ~ r r - -(Pr-lg~-~)(k~,-~ ~- 2)tg~-~ ~-Ig~ g~ g, - -  g, ~-lgi g~-~,,)/(g~ g~)(P,-tg~-z) 

- -  - -  T H r , (k~ ,_x  + kz)(g, rHr-~g~ gi-1 , - lgd  

- - - -  k r rHr r -- [(klc~_~ @ 2)/g~ g,] g~ ,-~g~(g~ g~ - -  gr  g~). (83) 

Substi tuting (82) and (83) into (81), we have 

B" rHr  , r ,r k ~ r Pi (g~ i-lgi/gi  gi)( :t i - 1  @ k2)[(girg~ " -- + = gi- lgi)  Pi-1 pr-lgi-lg~]. (84) 

Let  the choice of x 0 and H 0 be independent  of the parameter set. 
Then,  the direction P0 is the same for all algorithms. Therefore, x 1 and 
gl are the same, and the vector Pl is the same, except for a multiplying 
factor. Consequently, x~ and g2 are the same, and so on. 

Thus,  all algorithms of the type (13)-(18), regardless of the values 
of the parameters, give the same succession of points at n = 2. Since D 
is a particular case of such an algorithm, then everything that has been 
said about its properties is characteristic of all the algorithms of the 
class (13)-(18). 

The  results of the comparison stated above have a qualitative 
local character, and the analysis is given for two-dimensional functions. 
In  this connection, it is interesting to compare the conclusions made with 
the results of an experimental comparison of the methods for well-known 
test functions. 

In Figs. 2-8, the results of an experimental comparison of the 
methods are shown. The  number  of iterations is set along the abscissa, 
and the logarithm of the function value is set along the ordinate: the 
solid line characterizes the D-method,  the dashed line refers to the 
CG-method,  the dotted line refers to the APT-method,  and the solid- 
dotted line refers to the SD-method.  Figures 2-5 show the results of 
the comparison for the two-dimensional Box function (Ref. 3) 

f ( x l ,  x2) = ~ [exp(--xlv) -- exp(--x~v) -- exp(--v) @ exp(--10v)] e, 
v 

where the summation is over the values v = 0.1, 0.2 .... , 0.9, 1.0. The  
following initial points are employed: (0, 0), (0, 20), (5, 0), (2.5, 10). 

Figure 6 shows the results of the comparison for the Rosenbrock 
function (Ref. 7), a parabolic valley, 

f ( x ~ ,  x2) = 100(x2 -- x12) ~ + (1 -- xl) 2. 

The  initial point is (1.2, 1.0). 



654 J O T A :  VOL,  13, NO.  6, 1974 

~o~Ji 

- i  

-2 

-3 

-0 

-7 

-$ 

\ \  

~__CG 
. . . . . .  APT 

t, lr, e a z  mi.nlmlzo~iot)s" 

Fig. 2. Box 's  funct ion,  xo = (0, 0). 
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Fig. 3. Box's  funct ion,  xo = (0, 20). 
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Fig. 4. Box's function, x0 = (5, 0). 
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Fig. 5. Box's function, xo = (2.5, 10). 
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Fig. 6. Parabolic valley. 
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F i g .  8. P o w e l l ' s  f u n c t i o n .  

Figure 7 gives the results of the comparison for the Fletcher and 
Powell test function (Ref. 7), a helical valley, 

f ( x ~ ,  x 2 , x3) = 100{[x 3 -- 100(x~x2)] 2 ÷ [(x~ 2 -? x2~) °.~ - -  1] 2} -k x32, 

where 
t arctan(xdxl) ,  X 1 > O, 

27r0 = (Tr -~ arctan(x~/xa) , x z < O, 

--rr/2 < 2rr0 < 3rr/2, --2.5 < xa < 7.5. 

The  initial point is (--1,  0, 0). 
Figure 8 plots the results of the comparison for the Powell test 

function (Ref. 11) 

f ( x  a , x~,  xa ,  x4) = (xl  q- 10x2) ~ q- 5(xa -- x4) 2 + (x2 -- 2xs) ~ q- 10(x I - -  X4) 4. 

The  initial point is (3, --1,  0, 1). 

13. Resu l t s  

(i) The  qualitative results of the analytical comparison of different 
methods are confirmed by the numerical compariosn for a number  of 
test functions. 
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(ii) The figures show that, at the first stage of the search, APT 
and SD coincide, CG coincides with D and is better than APT. 

(iii) Then, the turn stage follows, where SD, CG, and APT can 
be better than D. APT can be better than CG. For example, for the 
Box function [initial point (0, 0), see Fig. 2], CG and APT provide a 
smaller function value than D at the 2nd through 6th steps. 

(iv) Then, the stage of moving in the valley follows; here, the 
advantages of D over CG, of CG over APT, and of APT over SD are 
unquestionable. But exceptions are also possible. Thus, Fig. 6 shows 
that, at the beginning of the search, APT succeeded in approximating the 
valley and outstripped CG. But its turn was worse; and, starting from the 
16th step, CG does better than APT. 

(v) Since it advances in the valley successfully, D is the first 
method to arrive in the neighborhood of the extremum, where the 
function diminishes abruptly. 

(vi) At each stage of search, the methods can be ranked as in 
Table 1. 

(vii) CG is better than D only at one stage, the turn. This superior- 
ity can be attributed to the property of restart. This fact allows one to 
suggest a new method of search possessing the best properties of both 
algorithms. 

The D-method forms the core of this new method and is modified 
as follows: after the descent into the valley (that is, after n iterations), 
one resets H~+ 1 = H 0 . This proposed method is found to be more 
effective than the CG-method and the D-method. 

The results obtained also make it possible to understand why, for 
the same function, the performances of the methods can change, de- 
pending on the initial point of search. Indeed, the choice of the initial 

Table 1. Algorithm rank table. 
I H H  III  mml , , ,  ,,,,,,,,,,,,,,,,,,,,, I Im,,,,,,,,,,, 

Stage of search Descent Turn 

SD-method 1 1 
APT-method 2 2 
CG-method 2 1 
D-method 3 3 

i 

Moving in the 
Advancement neighborhood 
in the valley of the extremum 

, ,,, ,,,,,,,,,,,,,,, H H i l t  H t l  

4 3 
3 2 
2 1 
1 1 

, i t i t  i,lltll 
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point defines the duration of the search stage. Because the performances 
of the methods differ at the different stages of search, it is possible to 
choose lucky points so that diverse methods would prove to be equally 
efficient. 
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