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Most scientists seek to explain as well as describe and
predict empirical regularities.1 Often such explanations
involve optimality arguments, ranging from "least effort"
principles in physics to "survival of the fittest" in biology
or economics. This paper suggests that the use of op-
timality in science is a powerful heuristic (i.e., a mental
shortcut) for describing existing phenomena as well as
predicting new ones. As with any heuristic (Tversky &
Kahneman 1974), however, the optimality approach is
prone to systematic biases, which the paper identifies.

First, a brief review is offered of the pervasiveness of
optimality arguments in various sciences. The concept of
optimality is then examined as a model bound notion,
involving intentional and teleological perspectives. Fer-
mat's principle of least time is used to examine the
difference between teleological and causal theories, fol-
lowed by a discussion of modes of scientific explanation.
The paper closes with an examination of the rationality
assumption underlying economics. Both the power of the
optimality heuristic and its inherent biases are high-
lighted.

1. Optimality principles

Whenever a behavior or other empirical phenomenon is
explained as maximizing or minimizing some objective
function (subject to well-defined constraints), an op-
timality principle is implicitly or explicitly adduced. This
paper examines the scientific use of such optimality
principles, a key characteristic of which is that the em-
pirical phenomenon of interest is viewed as a necessary
consequence of optimizing some well-specified objective
function. The following are examples of such optimality

principles in various fields of inquiry. To develop the
argument, we will equate extremum principles with
optimality principles (although some readers may find
this objectionable).

1.1. Economics. Among the social sciences, economics is
most closely wedded to the optimality approach, es-
pecially at the microlevel. Individual consumers as well
as business organizations are presumed to be maximizing
entities who calculate with lightning speed their optimal
consumption patterns and output levels. Cournot (1838),
Pareto (1897), and others (such as Edgeworth, Slutsky,
Walras, and Marshall) introduced mathematics with great
vigor (and controversy) into economics, and Paul Sam-
uelson (1946) set the standard for subsequent generations
regarding the use of formal analysis. Today optimality
models abound in economics, ranging from Pareto op-
timality to the optimal designs of incentive structures and
contracts in firms.

Current theories of finance, as a branch of micro-
economics, offer a good example of the approach (Fama
1976). Firms are presumed to issue stock and debt in
ratios that minimize the total cost of capital. Investors
assess stock prices by rationally projecting dividends and
discounting them for time and risk. The latter concerns
only the so-called systematic risk component (i.e., covari-
ance with the market) as most firm-specific risk can be
diversified away via portfolios. Investors are assumed to
hold only efficient portfolios, that is, those having mini-
mum risk for a given level of expected return. New
information immediately gives rise to new expectations
concerning dividends (via Bayes' theorem), so that stock
prices follow Martingale distributions or random walks
(see Fama & Miller 1972). Although no claim is made that
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anyone actually solves the complex equations involved, it
is nonetheless argued (in the tradition of positivism) that
such "as if" assumptions closely predict aggregate real-
world behavior.

Several authors have examined optimality parallels
between economics and physics (Magill 1970; Samuelson
1970; Tinbergen 1928) as well as economics and biology
(Alchian 1950; Cooper 1987; Ghiselin 1974; Hirshleifer
1977; Houthakker 1956; Maynard Smith 1978). In eco-
nomics, either expected utility or economic profit is
maximized; in biology, mean fitness or reproductive
survival of genes or organisms (Lewontin 1974).2 In the
latter case (as in physics and chemistry), the optimization
argument is clearly advanced "as if," since biological
entities lack the conscious striving and foresight charac-
teristic of humans. Thus, the justification for the op-
timality heuristic seems, a fortiori, stronger in economics
than in the life or physical sciences, although some
consider even economic rationality no more than "as if"
(Friedman 1953).

1.2. Physics. Maupertuis's (1744) principle of least action
is perhaps the first major use of a formal optimality
argument in science (see von Helmholtz 1886). It holds
that a mechanical system moves along the path of least
resistance (i.e., minimal mechanical action). In optics,
this law was known earlier (ca. 1657) as Fermat's principle
of least time (assuming total energy remains constant).
Both principles were later generalized, following Euler
(1744) and Lagrange (1788), by Hamilton (1834; 1835) to
systems without conservation of energy. Hamilton's prin-
ciple of least action has become one of the major unifying
concepts of theoretical physics.

The application of Hamilton's principle involves the
calculus of variations and can be illustrated by consider-
ing the trajectory a ball will follow when thrown away in
the air. In a constant gravitational field, without other
forces operating, the trajectory of the ball will be a
parabola. This is derivable from the least action principle
as follows. Let imv(x)2 be the kinetic energy at a given
point x along the trajectory and mgx its potential energy
(where m is mass, v velocity and g the gravitational
constant). If we "sum" the differences between kinetic
and potential energy along the trajectory, the following
function obtains:

Action = [-mv(t)2 - mgx{t)]dt where x = f(t)
J Z

1 , dx
and v = -j-dt

To find the path of least action, perturbation analysis can
be used along a presumed optimal path x(t). This method,
familiar in the calculus of variations, will yield a parabolic
function as the solution (see Hylleraas 1970).

Similar calculus of variation models are found in rela-
tivity theory, where the optimal path (in curved space)
corresponds to that of minimum length. In membrane
physics, the minimum energy principle translates into
liquid films enveloping a given volume (e.g., droplet)
with minimum surface area. In electrostatics it predicts
that the potential between two conductors adjusts itself so

that electrostatic energy is minimal. Similarly, an electric
current will distribute itself through a material so as to
minimize heat generation (assuming Ohm's law holds). As
Feynman et al. (1964, Chapter 19, p. 13) noted, Hamil-
ton's law is a cornerstone principle of both classical and
modern physics, which offers "excellent numerical re-
sults for otherwise intractable problems."

1.3. Chemistry. Apart from its use of physics, chemistry
has developed optimality principles of its own (although
fewer than physics). Perhaps the most general one is the
equilibrium concept in chemical kinetics. Equilibrium
seeking can be viewed and expressed as minimizing a
difference function defined on the actual and ideal states.
Le Chattelier's principle, for example, predicts that solu-
tions in equilibrium will react chemically to counter the
cause of any change that might be introduced (see Brescia
et al. 1966, pp. 341-43). Another example in chem-
istry/physics is Hund's rule of maximum multiplicity,
which describes how electrons fill up orbits around atoms
(Brescia et al. 1966, p. 189).

A second major principle in chemistry (and physics) is
that of entropy maximization in closed systems. When
two gases are mixed, this principle predicts that their
configuration will tend toward maximum chaos. The
entropy concept is closely linked to that of maximum
likelihood, which features prominently in statistical me-
chanics and physical chemistry (e.g., the Maxwell-
Boltzmann distribution law for molecular velocities in a
gas; see Tipler 1969, pp. 66-78). In contrast to the least
effort principle, chemistry advanced in the late nine-
teenth century the Thomsen-Berthelot principle of max-
imum work or heat to explain chemical reactions between
solids (see Partington 1964). Later, this principle was
restated in terms of free energy and entropy.

1.4. Biology. Although biology seems qualitatively differ-
ent from physics and chemistry in that it examines muta-
ble living systems, many links exist. The equilibrium-
seeking laws of chemistry and physics find expression in
dissipative structures as the principle of homeostasis. The
latter causes the cells or organism to maintain certain
chemical balances and tree leaves to position themselves
for optimal sun intake. Homeostasis may also underlie
various allometric laws, which describe optimal rela-
tionships between form and function (d'Arcy Thompson
1917; Varela 1979). For example, stable log-linear rela-
tionships can be found between head (or tail) length offish
and total length; or when plotting trunk width against
trunk length in adult mammals. The presumption is that
these ratios reflect optimal design and biological
autonomy.3

The presumed driving force behind such biological
optimality is natural selection. Whenever a population
possesses (1) variance in genotype, (2) inheritability of
genotype, and (3) natural selection, evolution is predicted
toward the fittest (in the reproductive sense). Much
evidence exists for such evolution, which in stable en-
vironments might bring forth optimal adaptation. For
example, the shark, barracuda, and dolphin exhibit re-
markable similarity of form (for such different verte-
brates), suggesting that their common environment has
evolved an "optimal" design. Similarly, it has been math-
ematically argued that our vascular system has evolved
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into an optimal network when examining at what angles
arteries branch, how often they branch, and how diame-
ters narrow further down the supply lines (Rosen 1967).

Ecology or population biology is especially drawn to
the optimality approach. Various analytic and empirical
studies have claimed optimal sex ratios in species (Bull
1983; Karlin & Lessard 1986), optimal foraging (Charnov
1976; Fantino & Abarca 1985; Rodman & Cant 1984) and
predator switching (Rapport 1971) in animals, optimal
division of labor among social insects (Wilson 1975), or
optimal mating behavior in animals (Maynard Smith
1982). Strong parallels exist, in these models, with those
of economics where selection occurs at the organizational
as well as individual level. In biology, selection is pre-
sumed to operate at the species, organism, as well as
genome levels.

1.5. Other disciplines. Most other sciences seem not-as
permeated with optimality principles as economics,
physics, chemistry, and biology. No doubt differences in
the use of mathematical modeling explain much of this,
although biology is not an especially mathematical disci-
pline (for exceptions see Lotka 1956 or Barigozzi 1980).
Whenever striving or competition is involved, the op-
timality perspective seems plausible. Nonetheless, so-
ciology or anthropology generally do not claim (either
quantitatively or qualitatively) that their societies, struc-
ture or processes are, in a general sense, optimal. Excep-
tions exist, however.

Wilson (1975), a sociobiologist, has used ergonomic
theory to show that certain caste systems among social
insects are optimal in their division of labor. In mature
colonies, he argues, caste ratios approach an optimal mix
in the sense of maximizing the rate of production of virgin
queens and mates (given its size). Similarly, Becker
(1976), an economist, developed formal models of mar-
riage, discrimination, capital punishment, and so on, that
rest on utility maximization. In psychology, signal detec-
tion theory, learning, operant conditioning, and choice
theory have been formally expressed in optimization
terms (Coombs et al. 1970). In sociology, in contrast, few
formal optimization arguments are encountered, even
though a flourishing subfield of mathematical sociology
exists that is concerned with quantitative models of
change and network structures (Coleman 1990; Sorenson
1978). Functional explanations in sociology and an-
thropology (Elster 1982) - such as social institutions
serving the greater good - can also be construed as
qualitative optimality arguments (e.g., Elster 1983 for a
discussion of maximization in art).

Optimality arguments are also used in other physical
sciences besides physics and chemistry. In geology, the
paths of rivers have been shown to afford maximum
throughput of water per time unit relative to the con-
straints of the terrain (Press & Siever 1974). In mete-
orology, weather systems are commonly found to equili-
brate or dissipate in optimal fashion (Paltridge 1975).
Last, cybernetics (Ashby 1956; Shannon & Weaver 1949;
Wiener 1961) often models feedback and control systems
in optimality terms. Furthermore, in the sciences of the
artificial (Simon 1981), explicit attempts are made to
design optimal systems. If the design problems are too
complex for mathematical solution, analog models can
sometimes be used to let nature solve them. For exam-
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pie, Kirkpatrick et al. (1983) used simulated physical
annealing to optimize otherwise intractable combina-
torial problems in computer design.

This section has established, at some length, the per-
vasive use of the optimality or at least extremal principles
across a wide range of sciences. It is surprising, however,
that most scientific texts fail to mention optimality in their
indices. Whereas epistemological aspects of optimality
have been extensively examined (Canfield 1966; Nagel
1953; Rosenberg 1985; Woodfield 1976), the concept is
absent from the eight-volume index of the Encyclopedia
of Philosophy (Edwards 1972), although it does contain a
brief section on extremal principles. Optimality is also not
mentioned, as a distinct philosophical entry, in The New
Palgrave: A Dictionary of Economics (Eatwell et al.
1988). This paper seeks to redress this imbalance by
asking scientists to clarify to what extent they deem
optimality (in their own discipline) to be in the eye of the
beholder as opposed to part of nature.

2. The concept of optimally

The use of optimality arguments in science involves a
mathematical as well as an empirical component. The
mathematical component is essentially a test of internal
validity: Is the proposed solution indeed optimal (either
locally or globally) relative to the criterion function and
permissible domain? Although such questions can be
complex, especially regarding the existence, uniqueness,
and identifiability of a solution, the formal meaning of the
optimality concept is well-defined. The real difficulty
concerns the model's external validity: Does it correctly
describe the phenomenon of interest? Three factors will
be discussed as potentially troublesome concerning the
empirical component: (1) Can anything be modeled as
being optimal (given sufficient degrees of freedom)? (2)
How comprehensive can our perceptions of nature be,
given that they are species-specific constructions of real-
ity? (3) Are nature's optimality principles, as uncovered
across fields, mutually compatible?

Concerning the first point, the optimality concept can
be easily trivialized as follows. Take any empirical law y =
fix); express it as the first-order condition y — fix) = 0;
find an integrand F — F(x,y) and boundary conditions
such that dF/dx = (bF/hy)(dy/dx) + 8F/6x = y -fix). Of
course, the maximand F must be plausible, and so must
the boundary conditions. The issue is by no means trivial
(see Bordley 1983), however, especially in a field such as
economics, where the permissible degrees of freedom
concerning (1) the objective function, (2) the decision
variables, and (3) the constraints are less well specified
(e.g., unobservable budget constraints, transaction costs,
information sets, cost of thinking, etc.). In the hands of a
capable mathematical economist, a disturbingly large
number of behaviors can be rationalized as being optimal,
attesting to the dangerous and seductive flexibility of this
heuristic. In Schoemaker (1982), such ex post facto use of
optimality was referred to as postdictive, in contrast to
predictive or positivistic models, which are falsifiable at
least in principle.4

Similarly, in population ecology, foraging or mating
behavior can easily be modeled as being optimal, which
in turn has prompted various essays (Dupre 1987; Kings-
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land 1985; Maynard Smith 1984; Oster & Wilson 1978;
Rachlin 1985) as to who is optimizing: the scientist or
nature? Gould and Le won tin (1979), for example, partic-
ularly criticized panselectionists for their quick-footed-
ness in proposing new selectionist explanations once old
ones were discredited. Here is a sample of their criticism:

If one adaptive argument fails, try another. Zig-zag
commissures of clams and brachiopods, once widely
regarded as devices for strengthening the shell, be-
come sieves for restricting particles above a given
size. . . . A suite of external structures (horns, antlers,
tusks) once viewed as weapons against predators, be-
come symbols of intraspecific competition among
males. . . . The eskimo face, once depicted as 'cold
engineered' . . . , becomes an adaptation to generate
and withstand large masticatory forces. . . . We do not
attack these newer interpretations; they may all be
right. We do wonder, though, whether the failure of
one adaptive explanation should always simply inspire
a search for another of the same general form, rather
than a consideration of alternatives to the proposition
that each part is 'for? some specific purpose [i.e., the
product of natural selection]. (Gould & Lewontin
1979)5

A second reason for being suspicious of grand op-
timality principles, such as Hamilton's least effort princi-
ple, Darwin's survival of the fittest,6 or Smith's invisible
hand (as a way of maximizing social welfare or at least
allocative efficiency)7 is that they were posited by crea-
tures who themselves are part of the world they seek to
describe (Whitehead 1920). Through our sense-aware-
ness we presumably obtain just one of several possible
representations of outside reality. In the case of vision,
our normal range is limited from three to about eight
thousand angstroms. And even within this narrow win-
dow we actively attend to less than 2% of the visual field.
In addition, the eye is hardly an objective camera with
cables, lenses, and screens (Hubel & Wiesel 1979), but
part of a highly specialized information processing system
that acts on prior categorization and expectations
(Chomsky 1980; Hess 1973).

Our sense of there being just one reality (the one we all
perceive) presumably stems from a uniformity within our
species as to our mental primitives and pattern recogni-
tion.8 Nonetheless, even our own limited window on the
world is not always coherent. Optimal illusions remind us
of the approximate nature of our perceptions. The notion
that we can objectively perceive the surrounding world
has proved untenable, especially in quantum mechanics
(d'Espagnat 1979). In addition, nature has hardly proved
to be commonsensical: Current conceptions of space
(Callahan 1976) and time (Layzer 1975) are beyond most
intelligent lay people and more than stretch our Imagina-
tion. As Haldane (1927) noted, "The universe is not only
queerer than we suppose, but queerer than we can
suppose." Although researchers' bounded rationality (Si-
mon 1957) is a caveat for all scientific theories, It es-
pecially applies to those claiming to have uncovered
Nature's deepest or grandest principles.

The third concern is that optimality principles may be
postulated which collectively do not add up to a coherent
whole. Is the principle of least action, for instance,
compatible with that of maximum chaos? (Most physicists
would say yes, but not all; see Prigogine & Stengers

1984.) Can a natural selection principle, which operates
reactively and with lags, ever lead to optimal adaptation
in a changing world? Is evolution and the complexifica-
tion of dissipative structures (Prigogine & Stengers 1984)
compatible with the principles of entropy and chaos?
Is constrained optimization (e.g., maximizing economic
utility subject to a budget constraint) a contradiction in
terms if the constraints can be relaxed (at a nonzero
shadow price)?

What guarantees can we have that the infinite regres-
sion problem inherent in relaxing or (tightening) con-
straints at various metalevels will converge toward a
stable solution (see Mongin & Walliser 1987)? How could
we have argued that economic man was optimal 10 or 20
years ago, when by today's standards these past op-
timality models are simplistic and Incomplete? Especially
In the economics of information, the early optimization
models made such strong assumptions as fixed search
rules (Stigler 1961), whereas later models introduced
"more optimal" variable rales (Rothchild 1973; 1974).
Future generations will presumably consider our current
optimality models unduly constrained and simplistic
(Bounds 1987).9

Although the social sciences may suffer more from the
fact that optimality is a moving target, conscious striving
may be a condition favorable to optimality arguments.
(Note, however, that consciousness and choice also open
the door for suboptimal decisions.) [See also Libet: "Un-
conscious Cerebral Initiative and the Role of Conscious
Will in Voluntary Action" BBS 8(4)1985; and Searle:
"Consciousness, Explanatory Inversion, and Cognitive
Science" BBS 13(4)1990.] Animals are less dellberatlvely
purposive (McFarland 1977; although see Griffin 1981),
whereas plants and lower organisms are mostly passive
participants In the process of natural selection. Nonethe-
less, they do undergo selection (by the environment). In
contrast, physics, the most sophisticated of the optimality
sciences, has the fewest a priori arguments in its favor.
The laws of nature do not seem to have been selected for,
nor do they appear mutable. Only appeals to a grand
designer (God) or viewing optimality as a heuristic can
justify the prominence of optimality theories in physics.
To assess the extent to which physics' use of optimality
involves teleology or metaphysics, Fermat's principle of
least time is examined next.

of least time

When we place a stick in the water, it seems that the angle
above water Is different from that below. This refraction
phenomenon was extensively examined by the Greeks
(especially Claudius Ptolemy) who constructed various
tables of ingoing (or Incident) and outgoing (or refracted)
angles between air and water. However, it was not until
the seventeenth century that an algebraic law was dis-
covered (by the Dutch scientist Willebrord Snell) linking
Incident (0X) and outgoing (02) angles. Snell's well-known
law is sin 0X = n sin 02, in which n Is a constant specific to
the media Involved. Although the task of science may
seem completed when such laws are discovered, the
French scientist Pierre Feraiat (1601-1665) took it one
step further (as Is common in science; see Nagle 1961).

In going from A to B, he argued, light does not
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necessarily travel the path of minimum distance but
rather that of shortest time (see Figure la). Suppose A is a
point on the beach, and B a point in the ocean. What will
be the quickest way to rescue someone drowning in the
water at B when starting from point A? Ideally, one
should angle the point of entry into the ocean (point X in
Figure la) so that more time is spent in the faster medium
(the beach), relative to the straight line route, and less in
the slower medium (water). The optimal angle directly
depends on the relative velocities in the two media, and
corresponds to n in Snell's law.

Snell's law can be derived directly from the geometric
puzzle discussed above. As light travels from point A to B
in Figure la, its refraction at the border between air and
water will be such that sin 02 = (%/%) sin 02- This, as
proved in the Appendix, guarantees the shortest path in
time. Fermat's ingenious principle generated a host of
new hypotheses in optics, many of which proved correct.
For instance, the least time principle predicts symmetry
when reversing direction of propagation. It also predicts
that light travels faster in air (v±) than water (u2), and that
n = %/%• Thus, Ferrnat took SnelFs law far beyond the
original phenomenon of interest, deducing the shape
needed for perfectly converging lenses as well as how
light behaves with multiple lenses. No doubt Fermat's
principle was very productive. But does it mean that
nature optimizes?

The eminent physicist Richard Feynman expressed
well the concern many feel when confronted with such
principles as Fermat's. In his words:

The following is another difficulty with the principle of
least time, and one which people who do not like this
kind of a theory could never stomach. With Snell's
theory we can "understand" light. Light goes along, it
sees a surface, it bends because it does something at the
surface. The idea of causality, that it goes from one
point to another, and another, and so on, is easy to
understand. But the principle of least time is a com-
pletely different philosophical principle about the way
nature works. Instead of saying it is a causal thing, that
when we do one thing, something else happens, and so
on, it says this: we set up the situation, and light
decides which is the shortest time, or the extreme one,
and chooses the path. But what does it do, how does it
find out? Does it smell the nearby paths, and check
them against each other? The answer is, yes, it does, in
a way. (Feynman et al. 1964, Chapter 26, p. 7)

As Feynman explains, there is a quantum-mechanical
view of SnelFs law that gives considerable justification to
Fermat's principle. Consider shining a flashlight into a
rectangular water basin at an angle so that an underwater
image appears on the back wall of the basin (as in Figure
lb). Why will the image be lower than expected from a
straight line viewpoint (i.e., below point C)?

If light is viewed as photons (i.e., particles), the bright-
est image on the back wall occurs where the most photons
strike. The probability of a photon striking is directly
proportional to the number of pathways from point A (the
origin) to some point B (on the back wall). Each pathway
has a complex vector associated with it, whose angle is
proportional to the travel time of that path. The overall
probability of striking is obtained by adding all these
complex vectors for a given point B and taking the
squared length of the sum. The brightest point on the

Figure la. Geometric illustration of Fermat's principle

Figure lb. Photon view of light refraction

back wall will be that for which the various pathways are
aligned in terms of vector angles as opposed to cancelling.

The path of least time has the mathematical property
that nearby paths will differ little from it in travel time,
thus reinforcing the total vector length, In the language of
the calculus of variations, the least time path is one for
which first-order deviations from the path have only
second-order effects on the time function. Only at a
minimum or maximum do small deviations make no
difference as a first-order approximation (e.g., in a Taylor
series expansion).

Fermat was ingenious to have formulated a principle
that accords so well with a deeper reality that was unre-
cognized at the time. His principle injected science with a
metaphysical perspective, however. Whereas Fermat
may have been inspired by the prevailing view that God
designed a perfect universe, modern use of optimality
stems more from a pragmatic (i.e., it works) than a
religious belief. Nonetheless, the teleological nature of
optimality arguments, especially in physics, sets them
apart from causal theories. The next section contrasts
teleological with causal explanations, and argues that
both rest on psychological primitives that are only partly
understood.
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4a Scientific explanations

Of the many objects, organisms, behaviors, and systems
around us, two classes might be distinguished depending
on how we talk about them. If we attribute no inner
purposes, needs, or Intentions to them, they are non-
teleological (e.g., a stone, fire, air, or stars). The other
class, in contrast, is characterized by the presumption of
Intention, goal directedness, or plasticity (i.e., the ability
to reach a goal from multiple directions or initial condi-
tions). Humans, animals, and many lower organisms fall
into this second, teleological class. The distinction is
useful as it Influences the types of scientific explanations
deemed appropriate for each class. Causal explanations
are typically expected for the nonteleological class,
whereas intentional and causal ones are appropriate for
the teleological class. Let us examine each type.

When asked, "Why did x occur," one acceptable an-
swer Is to identify a causal pathway from a set of plausible
initial conditions to x (see Bromberger 1970). Many path-
ways (or causes) may exist, however. When a house burns
down Is it because of (1) a match being dropped, (2) the
flammability of the carpet, (3) the failure of the sprinkler
system, (4) the slowness of the fire department, or still
other causes? Mackie (1980) defined an acceptable cause
as being "an insufficient but nonredundant part of an
unnecessary but sufficient condition." This view Implies
that causal explanations are usually not unique and de-
pend on the expectational field of the observer. Objects
and events in the world exhibit correlation, temporal
antecedence, and contiguity (in space and time), but not
logical necessity. The latter, as Hume (1888) emphasized,
Is a construction of the mind based on subjective concep-
tions and expectations. Indeed, Russell (1959) felt strong-
ly that causality should be dropped entirely from our
scientific dictionary. Nonetheless, nonteleological rea-
soning about scientific phenomena often rests on a primi-
tive "causation" that is rather metaphysical and remains
Ill-understood in both psychology (Einhorn & Hogarth
1986) and philosophy (Bunge 1979; Davidson 1986; Kim
1981).

An alternative mode of scientific explanation is to
ascribe purposes and intentions. In a sense, teleological
explanations are the opposite of causal ones in that they
reverse the temporal order. A proper cause, It might be
argued, precedes Its effect In time. When we say that
birds build nests to lay eggs, however, a future (desired)
state Is alleged to govern the action. As such, the dis-
tinguishing feature of teleological explanations is not so
much temporal order as the emphasis on goals and pur-
poses (Wright 1976). Although purpose and intentionality
may suggest notions of Intelligence, consciousness, or
even free will, the coexistence of physical determinism
and purposiveness has become less problematic since
Hobbes (1909) and Hume (1888) (see also Dennett 1978
or Schlick 1939).10 Thus, teleological explanations (such
as water seeking its lowest level) need not be meta-
physical (see Woodfield 1976). [See also Dennett: "Inten-
tional Systems in Cognitive Ethology: The "Panglossian
Paradigm' Defended" BBS 6(3)1983; and Schull "Are
Species Intelligent?" BBS 13(1)1990.]

Teleological explanations seem especially appropriate
when dealing with

1. cybernetic systems Involving feedback (Rosen-
blueth et al. 1943),

2. homeostatic systems that try to maintain an equi-
librium (Nagel 1953), or

3. Ill-understood systems. [See Toates: "Homeostasis
and Drinking" BBS 2(1)1979.]

Examples of each type are (1) a target-seeking missile,
(2) a thermostat, and (3) animals, humans, or nature. In
the latter case, the teleological approach often entails
anthropomorphism. When a child is thrown over by a
gust of wind, it will probably say the wind tried to hurt it
(Piaget & Inhelder 1975). To children and adults, random
or unexplained occurrences often assume personal mean-
ing. Similarly, scientists may explain puzzling phenom-
ena by imputing intentions. When asked why a balloon Is
round, we might say it chooses this form over others to
equalize Interior pressure. Such an explanation makes
balloons lawful and predictable, while suggesting new
avenues for exploration (e.g., what happens when you
squeeze it or partly submerge It in water).11

Because of Its metaphoric nature, the teleological ap-
proach can stimulate the mind to explore new avenues
more effectively than the causal approach. As with
causality, however, it rests on a primitive, namely, the
concept of purpose or intention, which remains philo-
sophically problematic (Canfield 1966; Chisholm 1956;
Wimsatt 1972) and, according to some, unnecessary In
our scientific lexicon (e.g., Skinner 1969). [See BBS
special Issue on the work of Skinner BBS 7(4)1984.]
Psychologically, this primitive involves notions of fore-
thought (i.e., a future orientation), assent (i.e., wish or
desire), potency (I.e., the ability to affect the world), and
consciousness of self (Warren 1916). Both causation and
purpose appear to be psychological primitives that we
naturally use to make sense of our surrounding world. It
remains unclear which of these two crucial concepts Is
epistemologlcally more objective or valid (Braithwait
1966).

ity heuristic

Saying that people are rational, narrowly defined, Implies
that they use reason (ratio, Latin) to select means that
maximize a well-defined end.12 This assumption seems
especially plausible in humans, who consciously strive to
better their situation and must often do so in a competitive
environment. This section examines both the pitfalls and
promises of the optimality heuristic when applied to
market behavior via the rational-economic man assump-
tion. Economists generally assume that when the stakes
are high enough people will act rationally for markets to
reach equilibrium and be efficient. The argument rests
on arbitrage opportunities being competed away by eco-
nomic agents who possess (1) well-defined preferences,
(2) comprehensive perceptions of the available options,
(3) rational expectations concerning consequences (ad-
mittedly a thin theory of rationality; see Elster 1983), and
(4) the ability to calculate which option has the highest
subjective worth (e.g., expected utility). These premises
are usually presumed to be "as if" assumptions and built
into economic models to predict (rather than explain)
real-world behavior. Several concerns exist, however,
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about the rationality heuristic (which is the primary
optimality principle in social science).

First, rationality (in the sense of optimal behavior) is
only operationally defined in limited circumstances. In
the case of certainty or risk (i.e., known probabilities),
near consensus exists among experts on what is meant by
rational behavior. Under certainty, it means maximizing
a utility function reflecting well-behaved preferences
(i.e., those that are transitive, connected, etc.) subject to
given constraints. Under objective risk, it is usually
defined by economists as obeying the Von Neumann-
Morgenstern (1947) axioms and maximizing expected
utility (Keeney & Raiffa 1976). When outcomes are un-
certain or ambiguous however (i.e., no agreed-upon
probabilities exist), expert consensus breaks down and a
variety of choice procedures are encountered, ranging
from pessimism or regret minimization to subjective
expected utility (see De Finetti 1975; March 1978; Milnor
1954; Schoemaker 1984; Shepard 1964).

In decision making under conflict, a similar absence of
consensus is found (Luce & Raiffa 1957). Game theory
offers numerous solutions, but only for the simplest of
cases is a strong prescription found (such as the maximin
principle, i.e., the notion that in certain zero-sum games
one is best off pursuing a strategy offering the highest
[max] return under the worst [min] possible counter-
move). In addition, group decision theory is plagued with
a variety of impossibility theorems, making it difficult in
most cases to identify the rational group decision (Arrow
1951; Satterthwaite 1975). Finally, intertemporal choice
theory rests on a less solid axiomatic foundation than one
would like. Discounted utility models, for instance, re-
quire Koopman's (1972) stationarity axiom, meaning that
preferences are invariant under deletion or addition of
time periods involving the same consumption levels. This
axiom in turn forbids wealth effects and intertemporal
synergies (see also Loewenstein 1987). Thus, although
rationality may be well defined in the abstract, its opera-
tionality (in the sense of decisiveness) is often limited in
scope.

A second concern is that for those instances where
rationality Is clearly defined, a growing body of laboratory
and field studies suggests that people do not act according
to the axiom (Einhorn & Hogarth 1981; Elster 1979;
Hershey et al. 1982; Kahneman & Tversky 1979;
Schoemaker 1982; Tversky & Kahneman 1981). Three
defenses are usually invoked by economists concerning
this counterevldence. One is that positive models need
not be realistic in their underlying assumptions, as long as
their predictions are accurate (Friedman 1953). Second,
laboratory studies fail to provide the incentives and learn-
ing opportunities encountered in the real world. Third, in
markets only a subset of the economic agents need to be
rational (i.e., those trading at the margin or arbitraging)
for the theory to work. It is usually not specified how
many agents are enough, however, nor how quickly
convergence to equilibrium should occur. Although the
individual evidence against the rationality assumption is
formidable, it remains an open question whether under
aggregation (in real-wo rid markets), the suboptimalities
cancel, diminish or magnify (see Hogarth & Reder 1986).
This question is especially crucial for such fields as policy
or corporate strategy, where many of the interesting

issues vanish when hyperrationality is assumed (see
Schoemaker 1990).

A third concern regarding the rationality hypothesis is
that it may be nonfalsifiable. The inconclusiveness of
rationality principles In such crucial domains as conflict
and group decisions, along with our limited understand-
ing of the links among individual, firm, market, and
macroeconomic behavior, permits a wide range of phe-
nomena. In addition, such unobservables as transaction
costs or the psychological cost of thinking introduce ill-
specified frictional forces that allow considerable depar-
tures from the ideal. For example, Simon's (1957) theory
of bounded rationality, according to which people satis-
fice rather than optimize, could be viewed as optimal
once taking into account search costs, limited knowledge,
and information processing limits. Of course, if all behav-
ior can be argued to be optimal, the concept loses em-
pirical content and falsifiability.

Nonetheless, the rationality heuristic has flourished In
economics. In microeconomics it gave rise to equilibrium
theories and theorems about comparative statics; in the
macro realm it spawned rational expectations theory.
Moreover, the rational economic approach has expanded
beyond Its traditional domain into animal economics
(Battalio et al. 1981 [see also Rachlin et al.: "Maximization
Theory in Behavioral Psychology" BBS 4(3)1981]; Mazur
1981), crime, marriage, and fertility (Becker 1976), public
policy (Buchanan & Tullock 1962; Downs 1957), law
(Posner 1973), conflict and war (Schelling 1960; Boulding
1962), and theories of organization form (Barney & Ouchi
1986). This wide scope speaks to the great power of the
rationality heuristic. In the absence of detailed knowl-
edge of the situation (e.g., about a firm or a marriage),
ordinal predictions can be made (e.g., about direction of
change) when varying certain parameters. This gener-
ality, however, is also the Achilles heel of economics; the
precision and specificity of the hypotheses lessen as the
theory's reach is extended.

6. The optimality heuristic and its biases

Given the wide use of the optimality heuristic, let us try
to characterize its general nature and provide a brief
summary of its potential biases. The following eight
features characterize the optimality heuristic in general
terms, with Fermat's example shown in parentheses.

1. Posing a why question (or explanandum): An unex-
pected or Intriguing state of nature needs to be explained
(e.g., Why is light refracted?).

2. Bounding the dotnain of inquiry: What are the
problem's boundary conditions? What are the variables
and what are their permissible ranges (e.g., light travels
in straight lines; all refraction angles between 0 degrees
and 180 degrees are a priori permitted)?

3. Selection of salient features: What aspect of the
phenomenon can be anthropomorphized or examined via
other metaphors (e.g., viewing light as traveling)?

4. Teleological description of the system: The phe-
nomenon is modeled as seeking a desired end state,
subject to certain constraints (e.g., light wishing to travel
in the least amount of time).

5. Search for the optimal solution: Mathematical tools
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are used to solve the optimization problem defined in
step 4 (e.g., the time function is differentiated with
respect to the angle of entry).

6. Empirical comparisons: The optimum solution ob-
tained in step 5 is compared with the observed state in
step 1 (e.g., Is the first-order condition that sin 0X =
(vjv^j sin 02 observed empirically?).

7. Further refinement of the model: If the predicted
solution does not accord well with reality, the constraints
or objective function might be adjusted to improve the
model (e.g., under a very flat angle light may not refract
but simply reflect).

8. Generation of new hypotheses: Does the tele-
ological principle imply new predictions that can be
tested empirically (e.g., What shape would be required
for a perfectly converging lens?)?

The value of any particular optimality model depends
in large measure on its plausibility (features 3-4) and the
new insights it generates (features 7-8). If aspect 7 is
highly contorted or arbitrary, for example, when the
empirical phenomenon is force-fit into an optimality
mold, the approach loses appeal and value. Whenever
the underlying teleological principle is plausible and
general (as with the law of least action), the associated
metaphoric reasoning can be a powerful shortcut to new
insights and solutions (Oppenheimer 1956). As is the
nature of all heuristics, however, the optimality approach
may be prone to various inferential biases (Kahneman et
al. 1982). Not all ofthese are unique to optimality models,
but each could seriously undermine their value, given the
highly flexible nature of this heuristic.

6.1. Attribution bias* When scientific data fit some op-
timality model (ex post facto), it does not necessarily
follow that nature or the agent therefore optimizes. To a
large extent, optimality is in the eye of the beholder. It is
the observer who is optimizing rather than nature (see
Kitcher 1985). Nonetheless, in such fields as economics
or ecology, agents' behavior is often deemed optimal
whenever it can be accounted for by some optimality
model. This, in my view, is a systematic and serious
attribution error. As Ernest Mach (1883; see also Bradley
1971), Heisenberg (1955), and many others have empha-
sized, reality is the nexus between our mind and a
presumed outside reality. The latter can hardly be under-
stood independent of the observer (although see
Schroedinger 1954; 1967).

6e2. Confirmation bias. Another inherent danger of the
optimality heuristic is that its proponents may search
more vigorously for confirming than discontinuing
evidence. Falsificationism (Lakatos 1970; Popper 1968)
would encourage such questions as, "How might we
prove that light (or people) are suboptimal?" to appreciate
better the limits of Fermat's (or economic) theory. In the
case of light, we might ask how it would behave if it could
travel in curved rather than straight lines, or if it mini-
mized energy expended rather than travel time.

The confirmation bias may also slip in when reviewing
the historical track record of the optimality heuristic. We
remember well the names of Pierre Fermat, Charles
Darwin, or Adam Smith, who were highly successful

champions of the optimality principle. We hardly recall
those who searched in vain for optimality or other aes-
thetically pleasing principles. One can only wonder what
additional insights Einstein's formidable mind might
have generated had he not stalked for more than 30 years
the elusive unified theory of the (then) four basic forces of
nature. Thus, the optimality heuristic may appear more
successful in hindsight than a complete historical ac-
counting would indicate.

683, Excessiwe rationalization. A third and related bias is
that the optimality heuristic can result in tortuous ra-
tionalization. If one's prior belief in the value of the
optimality heuristic is upwardly biased by the attribution
and confirmation biases, it may seem productive to pur-
sue it relentlessly. The attendant danger, however, is that
the heuristic degenerates into the kind of thinking par-
odied in Voltaire's (1759) Candide. Reacting against the
prevailing view that God had created a perfect world,
Voltaire describes Candide's life as one disaster and
mishap after another. Yet, amidst all the war, rape,
famine, and suffering, each chapter reiterates that "this is
the best of all possible worlds." By taking the argument to
its extreme, Voltaire highlights the danger of Leibnitz's
axiomatic commitment to a worldview steeped in op-
timality.13 Economics, ecology, and sociobiology are
some of the disciplines that have been criticized precisely
because of their remarkable propensity to rationalize
away anomalies.14

6A illusion of understanding* A final important bias of
the optimality heuristic is that it may create an illusion of
understanding by describing rather than explaining. In
Moliere's play he Malade Imaginaire, a doctor is asked to
explain the tranquilizing effect of a drug. He tries to do so
by attributing it to its "dormative faculty." Especially
when phrased in Latin, such relabeling may instill an
illusion of understanding (see Bateson 1979, p. 98). It fails
as an explanation, however (as well as description), be-
cause it predicts nothing new and offers no further in-
sight. Saying that light is refracted because it optimizes
something is certainly more than relabeling (as new
predictions were generated); however, it does fail to offer
a process or causal account.

The positivist view that only prediction matters is
fundamentally unsatisfying, and optimality principles
consequently suffer from being too paramorphic. Does
Fermat's principle really explain why and how light
refracts? Do economic models predicting consumer reac-
tions to price changes or equilibrium behaviors really
explain how people behave? When ecologists argue that
animals engage in optimal foraging, leaving one patch of
land for another when the benefit/cost ratio gets too low,
do they really explain how animals search for food? [See
also Fantino & Abarca: "Choice, Optimal Foraging, and
The Delay-reduction Hypothesis" BBS 8(2)1985; Hous-
ton & McNamara: "A Framework for the Functional
Analysis of Behaviour" BBS 11(1)1988; Clark: "Modeling
Behavioral Adaptation" BBS 14(1) 1991.] Each optimality
principle, it seems, begs for an associated process expla-
nation that describes causally, within the constraints of an
organism or system, how it operates.
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7o Conclusions

The optimality heuristic appears to be a very powerful
principle of scientific explanation and inquiry. It is en-
countered in almost all sciences that are mathematical,
and even in those that are not. Survival of the fittest,
which is perhaps the grandest of all optimality principles,
was formulated as a qualitative, conceptual cornerstone
in Darwin's (1859) theory of evolution. Entropy and least
action principles are other broad optimality laws, applica-
ble to systems that do not overtly strive or compete (e.g.,
nonliving systems). Equilibrium notions and homeostatic
behavior can also be interpreted as general optimality
principles, covering wide domains of application. The
issue arises, however, whether or not such optimality is
solely in the eye of the beholder.

It was argued that for fields such as physics or chem-
istry the optimality principle is metaphysical unless
viewed as a heuristic. As illustrated with Fermat's princi-
ple of least time, the refractive behavior of light can be
viewed teleologically (i.e., light choosing the quickest
route) or causally (i.e., photons following discrete paths
that interfere or magnify). Although the causal view may
seem more scientific, both modes of explanation rest on
psychological primitives (i.e., the notions of causation
and purpose) that remain ill-understood. Indeed, the
teleological approach, owing to its metaphoric nature,
can offer parsimonious summaries of physical laws while
often suggesting new hypotheses. Especially in the phys-
ical sciences, the optimality approach (as a teleological
principle) seems to have worked well (starting with New-
ton's laws of motion).

In the life sciences, the optimality heuristic has similar-
ly been quite powerful. Formal applications are found in
population biology, ecology, and medicine (e.g., mathe-
matical models of the heart or knee). Because of natural
selection, the justification for optimality principles seems
stronger in the life than physical sciences. Nonetheless,
adaptive systems can at best be optimal relative to a past
condition (because of lags) and it will be hard to assess for
optimality without explicit knowledge of the range of
genetic variation. Furthermore, if random (i.e., nonadap-
tive) mutations are introduced, the range of potentiality
becomes even harder to assess, and evolution may be
neutral (Kimura 1979; 1983). Thus, the reactive nature of
natural selection, the gradient climb toward local optima,
and the unknown forward potential of mutations would
appear to limit the appeal of optimality as an evolutionary
principle. As emphasized by Jantsch and Waddington
(1976), evolving systems are usually (1) imperfect, (2) in
disequilibrium, and (3) unpredictable.

In human systems, however, a forward looking dimen-
sion is encountered. Humans are presumed to deliberate
their future by learning from the past. Hence here the
case would seem strongest a priori for the use of op-
timality arguments. Yet, with the exception of econom-
ics, the social sciences have hardly embraced the op-
timality heuristic (although see Zipf 1949). Not all of this
can be attributed to the lack of mathematical modeling. In
part it reflects a reluctance (possibly based on introspec-
tive evidence) to ascribe too much optimality to our-
selves. As the anthropologist Eric Smith (1987, p. 205)
claimed, "The bias in most of the social sciences [is]

against reducing social institutions and processes to the
action of self-interested individuals." Our inner complex-
ity, as well as that of social aggregates, defies characteriza-
tion in optimality terms without considerable simplifica-
tion. Economics appears to be willing to pay the price of
simplification; most psychologists prefer to render more
detailed process descriptions (see Newell & Simon 1972;
Sayre 1986) with fewer grand, unifying principles (such as
utility maximization). Both approaches have their merit
and reflect more than differences in mathematical sophis-
tication.

Overall, the optimality heuristic has proved to be a
powerful heuristic of science. Ironically, it is used most
systematically and successfully in the physical sciences
where its case is weakest a priori, and least in the social
sciences (with the exception of economics), where its case
is strongest prima facie (because of the conscious striving
of people and the presence of competition and selection).
The heuristic is powerful because it can offer an efficient
summary of a system's behavior (Teller 1980) as well as
suggesting new hypotheses. Its limitations, however, are
that it can be too flexible, which may in turn lead to
attribution errors, confirming rationalizations, and the
confusion of prediction with explanation. Since its plas-
ticity seems to be higher in the social than the physical
sciences (owing to agents' consciousness, presumed free
will and numerous unobservables), it is perhaps not
surprising that optimality arguments are less eagerly
embraced in the social realm.

The overall appeal of optimality arguments rests in part
on our desire for simplicity and elegance in scientific
theories. This was forcefully expressed by physicist Leon
Lederman when he received the 1988 Nobel Memorial
Prize for his work on subatomic particles. "My goal is to
someday put [the basic laws of nature] all on a T-
shirt . . ."he said. "We physicists believe that when we
write this T-shirt equation it will have an incredible
symmetry. We'll say: 'God, why didn't we see that in the
beginning? It's so beautiful, I can't even bear to look at
it'" (Chicago Tribune 1988). Symmetry, simplicity, and
elegance appear to rank with optimality as among the
most important driving forces in scientific inquiry
(Chandrasekhar 1987). Our commitment to them, how-
ever, seems as much metaphysical as it does scientific,
and is therefore in need of continual scrutiny.

In closing, I should emphasize that this paper is by no
means an exhaustive treatment of the optimality
heuristic. Given the broad range of issues involved,
cutting across the physical, biological, and the social
sciences, as well as philosophy, I humbly acknowledge
my relative ignorance. Consequently, the ideas present-
ed here should be viewed as personal reflections, aimed
at inviting criticism and improvement. I leave it to each
commentator and reader to decide what optimality really
is: (1) an organizing principle of nature, (2) a set of
philosophically unrelated techniques of science, (3) a
normative principle for individual rationality and social
organization, or (4) a metaphysical way of looking at the
world. If the latter, we should strive to understand better
when and how this root metaphor (Pepper 1942) en-
hances rather than obstructs scientific inquiry. As to my
personal view, I consider the extremity principles en-
countered across sciences to represent both a common
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mathematical tool kit and a deeper assumption about
nature's economy and elegance. My overall concern is
that optimality principles reflect heuristic metastrategies
for scientific inquiry that are prone to significant, often
unrecognized, biases. The biases enumerated may be
stronger in the social and biological sciences than the
physical sciences because of the former's greater com-
plexity and larger degrees of freedom.

Derivation of Sneifs law of refraction. Assume we start at
point A and wish to reach point B as soon as possible with
a travel speed oivl above the horizontal line in Figure la
and a velocity of v2 below this horizontal line. Our
decision variable is x, the point on the horizontal border
where we change relative velocities. To solve this prob-
lem, we must first define the travel time T(x) as a function
of x, and then differentiate with respect to x to find an
extremum.

AX XBT(x) = — + —, where AX =

Thus,

and BX = V (d - x)2 +

or T(x) =

dT(x) ^

dx 2v1Va2 + x2 ' 2v2\/(d - x)2 +

x d — x

= 0

Vfl2 + X2 V(d - X)2 + fc2

or sin Ql = n sin 02 with n = vl/v2.
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NOTES
1. Scientists' high regard for theory and explanation (as op-

posed to classification or mere description) is clearly reflected in
Luis Alvarez's remark about paleontologists: "They are not
really very good scientists; they are really more like stamp
collectors." Description, in my sense, occurs at the level of
observation (e.g., Snell's refraction law in optics). Explanation
involves reductionism or some appeal to other, possibly nonob-
servable, constructs (as in Fermat's principle of least time).
Prediction concerns the ability to generalize beyond the original
domain of inquiry in empirically correct ways. As Friedman
(1953) argues, prediction need not involve description nor
explanation. I sympathize, however, with those who dislike
black box positivism (e.g., Samuelson 1963). Also, the earlier
distinction between description and explanation is rejected by
many (e.g., Bridgman 1948; Mach 1883/1942); however, see
also Kuhn (1962) and Quine (1969).

2o More specifically, the currency in most optimal foraging
models is the expected net rate of energy expended in foraging
(Smith 1987). More complex currencies might be multidimen-
sional (reflecting key nutrients), and include risk measures such
as variance.

3. Immanuel Kant wrote: "In the natural constitution of an
organized being, that is, one suitably adapted to life, we assume
as an axiom that no organ will be found for any purpose which is
not the fittest and best adapted to that purpose" (Kitcher 1987,
p. 78).

4o Note that Boland (1981) in general refutes the falsifiability
of utility maximization by resorting to Popper's (1968) view that
"all and some" statements are not refutable. For a counterargu-
ment, see Mongin (1986).

5o Adapted from Gould & Lewontin (1979, p. 586) as quoted
in Beatty (1987, p. 53) who critically reviews Mayr's (1983) coun-
terargument that the strategy of trying another hypothesis when
an initial one fails is common to all branches of science. The key
issue, however, concerns the level at which the reformulation
occurs and how many falsifications are needed before the under-
lying theory or paradigm is questioned. See also Kitcher (1985).

6. This phrase was actually Herbert Spencer's but captures
well the spirit of Darwin's remarkable and sweeping theory.

7o The presumed optimality of the free market system has
evolved much beyond Adam Smith's (1776/1976) insight that
voluntary exchange is mutually advantageous and ultimately
utility-maximizing for the parties involved. Coase (1960) em-
phasized that, under free exchange, property rights and re-
sources eventually end up in the hands of those for whom they
are most valuable (i.e., optimal allocation and usage) indepen-
dent of initial distributions or endowments. This insight is in
turn exerting an influence on the design and function of our
Institutions and our legal system (Posner 1977). For more detail
see Hirshleifer (1987, Chapter 9).

8o Although sense organs differ markedly across species -
with humans experiencing the world mostly through vision, bats
or dolphins relying much more on hearing, dogs or rats using
smell, certain fish and eels sensing electric fields, and spiders or
scorpions registering primarily vibrations - Shepard (1987) has
argued that all share the same three-dimensional Euclidean
world in terms of internal representation. He hypothesizes that
"our deepest wisdom about the world has long ago been built
into our perceptual systems at a level that is relatively automatic
and unconscious. If this is so, we may all be smarter than we
'think' - that is, smarter than our more recently acquired
processes of articulate thought" (Shepard 1987, p. 267). This
view further vitiates the notion that we could consciously com-
prehend nature's optimality, if any.

9o Many economists would argue that economic man is in-
deed optimal, but that our attempts to model economic man are
not, and thus undergo continual improvements (analogous to
physicists' improved models of the atom). The paradox here, for
economics, is that these bright scientists acknowledge their own
suboptimality in the fiercely competitive game of model build-
Ing while attributing perfect rationality to their lesser brethren
In the game of economic life.

ID. Lenoir (1982) offers a fascinating insight into teleological
versus mechanical views among nineteenth century German
biologists when Darwin's ideas gained currency. Although the
Darwinian view won out, biological language is still replete with
teleological terms, from selfish genes to survival instinct.

11. When plunged Into water, the balloon will change in size
and shape, but not instantly. As physicist David Lindley noted:
"Air inside the balloon will bounce around and oscillate until the
new stable shape is assumed. The significance of this is that the
bouncing around represents a physical and entirely causal way
by which the air in the balloon literally tries out other configura-
tions before reaching the one dictated by least energy" (personal
communication, Nov. 9, 1988).

12. A broader definition would include the rationality or
moral worth of the ends as well, and would perhaps reduce the
emphasis on the use of explicit reasoning (see Elster 1989).

13. I am referring here to Leibnitz's principle of perfection,
according to which "God selects that universe for which the
amount of perfection is a maximum" (Rescher 1979, p. 26).
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Leibnitz viewed this principle as a moral rather than a logical
necessity, stemming from the choice of the best.

14. Recent candidates in financial economics include at-
tempts to rationalize dividend policies of firms (Miller 1986),
and to explain away high volatility of stock prices (Kleidon 1986;
Shiller 1981) including the stock market crash of October 1987
(Roll 1989; Malkiel 1989). In the area of preference theory,
interesting rationalizations can be found regarding utility theory
anomalies (Cohen 1981; Loomes & Sugden 1982; Machina 1982;
Schoemaker 1982), and the so-called preference reversal phe-
nomenon (Grether & Plott 1979; Slovic & Lichtenstein 1983).
Of course, whether these are "true" rationalizations or standard
scientific defenses is largely a matter of opinion.

Commentary submitted by the qualified professional readership of this
journal will be considered for publication in a later issue as Continuing
Commentary on this article. Integrative overviews and syntheses are
especially encouraged.

Optimality and human memory

John R. Anderson
Department of Psychology, Carnegie-Mellon University, Pittsburgh, PA
15213-3890
Electronic mail: anderson@psy.cmu.edu

A preoccupation with optimality explanations can undoubtedly
lead a scientist to miss crucial insights into a particular class of
phenomena. This is true of any single-minded approach toward
theorizing, however. It is equally true that neglect of optimality
considerations can blind us to certain insights. As Schoemaker
notes, optimality analyses have not been much developed in
psychology and I (Anderson 1990a) have argued that this has
been at considerable loss of insight. Nowhere is this truer than
in our understanding of human memory. I would like to use the
domain of memory to look at the issues that Schoemaker raises
in a different light.

On a first impression, commonsense basis, human memory
might seem a poor candidate for optimality explanations. We are
forever complaining about how bad our memories are, failing to
provide us with the facts we need. Modern information-process-
ing theories of memory have taken this first impression to heart
and produced theories of memory mechanisms without concern
for their optimality characteristics. The work in this field illus-
trates that the falsification problems Schoemaker raises are not
unique to optimality theories. For example, the question of
whether there is a separate short-term memory has been ad-
dressed for decades without any adequate resolution, and it is
now regarded by many as nondecidable. The field also shows
that there can be progress despite such problems. We certainly
know a great deal more about the phenomena surrounding
short-term memory or working memory (Baddeley 1986).

Just as Schoemaker is ill at ease with optimality theories that
do not explain how the optimization is achieved, I have long
been ill at ease with the lack of concern about why the memory
mechanisms we have proposed behave the way they do. Marr
(1982) complained about a similar exclusive concern with mech-
anism in theories of perception. Marr's discussion of the com-
putational theory of perception applies equally well to memory:
"An algorithm is likely to be understood more readily by
understanding the nature of the problem being solved than by

examining the mechanism in which it is embodied" (p. 28).
What is the problem that human memory is trying to solve?
Memory is basically trying to perform an information-retrieval
task in which it must retrieve from a data base of millions of
experiences those memories relevant to the situation at hand.
This is essentially the same task that modern computer informa-
tion-retrieval systems try to perform (Salton & McGill 1983).
Compared to the performance of these computer systems,
human memory is far less nonoptimal. Thus, we see that first
impressions about the plausibility of an optimization explana-
tion can be deceiving.

To explore the possibility of an optimality explanation of
memory, we needed a theory of the information-processing
demands placed on memory by the environment. Adapting
theories developed for library borrowing (Burrell & Cane 1982)
and file access (Stritter 1977), we (Anderson & Milson 1989)
showed that many memory phenomena could be seen as optimal
responses to the statistical structure of retrieval requests from
the environment. More specifically, we showed that human
memory displays the fastest retrieval latencies and highest
probability of recall for the information that is statistically most
likely to be needed.

This research was based on information-retrieval demands
placed on nonhuman systems, however. More recently, Lael
Schooler and I set out to study carefully the actual information
processing demands placed on humans. We looked at a number
of such computerized sources of input to humans as topics in the
New York Times, electronic mail messages, and words spoken to
young children. This is not the place to describe our results in
detail, but in every case we found that memory functions
mirrored perfectly the statistical properties in the environment.
Thus, we are finding, contrary to all expectations, that human
memory seems exquisitely tuned to the statistics of information
presentation in the environment. Whether this will ultimately
be viewed as a case of optimization or it will be given some other
explanation, it illustrates the potential for optimality considera-
tions to lead to novel insight. This would never have been
known unless we chose to penetrate beyond the apparent
nonoptimality of human memory.

The domain of human memory also casts light on the question
of how such optimization can be achieved. The actual proof of
the optimality of memory requires relatively sophisticated Bay-
esian mathematical analysis. There has been no claim that
humans do this, however. In Anderson (1990a) I show that these
computations can be performed by neural activation mecha-
nisms that are exceedingly simple by today's standards for
neural computation (McClelland et al. 1986; Rumelhart et al.
1986). Thus, we see that one can get dumb mechanisms to
behave "as if" they are optimal.

Finally, memory phenomena illuminate the question
Schoemaker raises about the lag of the system: All the domains
we looked at are definitely modern in their character (New York
Times stories, electronic mail messages, modern parents'
speech to their children). Now if our memories evolved to be
optimal they presumably did so in the presence of rather
different input in the past, yet we find memory optimized to the
statistics of the present. We also see that they would behave
optimally if they were libraries or file systems. The obvious
conclusion is that some universals of information retrieval do not
change much with time or material. It is just such universals that
we would expect our memories to internalize.

Perhaps human memory is the perfect contrast to economics
in terms of evaluating the quest for optimality. One can argue
that in economics there is such a fixation on optimality analyses
that crucial insights have been missed. In the case of human
memory, however, optimality considerations have been ig-
nored at the cost of insight. There is no general answer to the
question of whether the quest for optimality is a positive or
negative heuristic for science. Sometimes it works and some-
times it does not, and we have to find where and how it works by
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engaging in the empirical inquiry that is science. [See also
Anderson: "Is Human Cognition Adaptive?" BBS 14(3) (forth-

Optimality as an ewaiuatiwe standard
in the study of decision-making

Jonathan Baron
Department of Psychology, University of Pennsylvania, Philadelphia, PA
19104-6196
Electronic mail: haron@cattell.psych.upenn.edu

I want to try to extend Schoemaker's excellent article by consid-
ering the use of normative models as evaluative standards
(rather than as descriptive models) in the study of decision-
making and related activities.

As Schoemaker points out, many departures from normative
models, such as expected-utility theory and Bayesian proba-
bility theory have been discovered in recent years (Baron 1988).
For example, Kahneman and Tversky (1979; 1984) showed the
following kind of "framing effect," in which the option chosen
depended on irrelevant features of the way a choice is described
to subjects: When subjects are told that 600 people are expected
to die in an epidemic, they prefer saving 200 to a J chance of
saving 600 (and a § chance of saving none), but other subjects
prefer a "J chance that nobody will die (and a § chance that 600
will die)" to the certain death of 400. Subjects presented with
both descriptions would easily recognize that a J chance of
saving 600 is the same as a J chance that nobody will die, just as
saving 200 is the same as the death of 400. Apparently, subjects
compare outcomes to a reference point (none saved or none
dead) that is easily influenced by the form of presentation.

The logic of such a research program might be described as
follows. We begin with a model of optimal decision-making. We
look for systematic, consequential errors defined as departures
from the optimal model. Then we ask whether people can
somehow be induced to improve their performance, to become
more optimal (e.g., Baron & Brown, in press; Larrick et a l , in
press). If the model of optimal decision making is correct, then
we can infer that we are doing good through such efforts (ceteris
paribus).

This logic depends on the correctness of the optimal, nor-
mative model. We cannot rely here on behavior to establish
correctness, for it is behavior that we are evaluating. We might
try to rely on intuitions that we have on reflection, either before
or after these intuitions are systematized into a coherent philo-
sophical theory of rationality. A danger in this approach, how-
ever, is that whatever is causing the errors in behavior will also
be reflected in our intuitions (as argued by Spranca et al., in
press), even when they are systematized. For example, many
theorists feel compelled to include a term for ambiguity in their
normative model (Ellsberg 1961), despite strong arguments
against such a move (Frisch & Baron 1988).

I have argued (Baron 1988) that normative models are best
thought of as derived from an analysis of the general goals
already inherent in the situations at issue. In decision-making,
our goal is to maximize the extent to which our goals are
achieved, that is, to maximize utility. From this criterion,
expected-utility theory can be derived. For example, one form
of the important independence axiom is that our choice should
not depend on any outcome that will be constant across our
options in a given uncertain future state. If option A leads to
outcome X in state SI (e.g., the coin is heads), option B leads to
Y in SI, and both options lead to Z in S2 (tails), then our choice
should depend on a comparison of X and Y. Z does not matter.
This principle follows from the fact that the achievement of goals
is not affected by events that do not occur. If SI occurs, then the
comparison of X and Y is what matters. This comparison cannot

be affected by the nature of Z, because S2 did not occur. If S2
occurs, our goals are achieved equally by either option, so the
nature of Z is again irrelevant. (We assume that X and Y are not
affected by the knowledge of the nature of Z. That is, X and Y are
full descriptions of all relevant aspects of the outcome, including
psychological aspects.)

To the extent that this kind of argument holds, we can
conclude that such violations of the normative model as those
discovered by Kahneman and Tversky lead to suboptimal
achievement of goals. At issue then is whether there is some
method of decision-making that would consistently lead to
improvements in the choice of options, judged by the standard
of the normative model.

Note that this use of normative models is distinct from a
weaker kind of evaluative criterion, namely, consistency be-
tween decisions and rules of decision-making that the decision
maker consciously accepts. By this criterion, a person who does
not accept expected-utility theory (or the axioms that imply it)
cannot be judged irrational for failing to conform to it. Such a
criterion of consistency is not a true use of optimality. Inconsis-
tency alone does not imply any failure to achieve one's goals, for
the principle that one adopts may be nonoptimal even when
one's action is optimal. It is not clear that helping people
become consistent will do them any good (as pointed out to me
by Deborah Frisch).

A second kind of consistency condition is illustrated by the
epidemic problem. An inconsistency is found here between
different decisions, not between a decision and a principle. Such
inconsistency does imply that at least one decision is not op-
timal, assuming that different decisions cannot both be optimal.
But inconsistency alone is a weak heuristic for discovering the
nature of the irrationality or for finding ways to correct it.
Fortunately, the epidemic problem can also be understood as a
specific kind of departure from expected-utility theory.

In summary, I have pointed to a concept of optimality that
does not suffer from the criticisms that Schoemaker correctly
makes of other optimality concepts. The idea of a normative
model as an evaluative standard can, in principle, help us
achieve our goals.

mathematics itoric

Fred L. Bookstein
Center for Human Growth, University of Michigan, Ann Arbor, Ml 48109
Electronic mail: fred_l._hookstein@um.cc.umich.edu

Schoemaker says that the optimality heuristic can "offer an
efficient summary of a system's behavior as well as suggest new
hypotheses" (sect. 7, para. 5). I disagree: Optimality principles
are not efficient summaries but at best tautologies. The proper
semantics of "optimality" is none of the four choices the target
article offers us in its last paragraph, but instead: a mathe-
matical/rhetorical style for reporting zeroes of derivatives gen-
erated by observation or by artifact.

As the target article explains in section 1, the path a mechan-
ical system takes is that about which the variation of the action
vanishes. This offers "excellent numerical results for otherwise
intractable problems," Feynman et al. (1964) noted. But the
article never returns to the actual (not the meta-) physics of this
example. Lanczos (1970, p. 77) explains that analytical mechan-
ics rests on one single postulate: "The virtual work of the forces
of reaction is always zero for any virtual displacement which is in
harmony with the given kinematic constraints." That is, me-
chanical systems, whether static or dynamic, are always in
virtual equilibrium - derivatives are zero - with respect to the
forces restricting them. The vanishing of the variation of action
(Hamilton's principle) is a logical consequence of this exact
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constraint (op. cit., p. 92). Optimality principles like least action
are not in fact used to explain anything. They are only mathe-
matical reformulations of the postulate. Although they allow the
solution of many textbook problems, they do not augment our
understanding of nature.

Schoemaker hints at this same critique at the end of section 6,
noting that any optimality principle begs for an associated
process explanation. Only in physics is this logical hiatus closed.
The path taken by a ray of light in the world is no more an
"optimization" than the nearly elliptical orbits of planets around
the sun. In holding constant the function of position and velocity
appropriate for motion driven by an inverse-square central
force, ellipses "optimize" nothing; they merely encode the law
of gravity in a more directly observable form. Contrary to
Schoemaker's assertion (sect. 7, para. 2), what drives mechanics
and light is geometrization (Lanczos 1970, p. 139), not optimiza-
tion. The situation in physics would be identical with "trivializa-
tion," the overinterpretation of which is properly criticized (for
economics) in the second paragraph of section 2 — except that, in
physics, Hamilton's principle holds exactly, so that problems
get solved.

In physics, then, optimality is fundamentally a mathematical
strategy, a reference to an integral having variation zero in place
of a quantity at equilibrium. Elsewhere it should be charac-
terized not as a scientific principle but as a rhetorical style.
Outside physics, quantities can be claimed to be optimal only
when their derivatives, with respect to some interesting quan-
tity (such as time), are zero. An "optimal principle," although an
impressive form for such reports, is neither explanation nor
summary of such data; it is only a restatement in different
notation. Any explanation or prediction associated with these
observations requires some mechanism to account for the invar-
iance. There are many different modes of this accounting -
none, in my view, very promising, mainly because the rhe-
torical alternative does not lead to any useful suggestions about
measurement.

The power of Hamilton's principle in physics derives not only
from the exact law that it embodies by integrals but also from the
ability of the physical scientist to measure many different as-
pects of the same mechanical system to comparable precision.
After the mechanicist has expressed the identical Lagrangian
function, the identical "action," in a new coordinate system, he
is often capable of actually measuring the values of those gener-
alized coordinates in independent ways, as the mass of Mars is
measured by the periods of its satellites, for instance. Using
different instruments, one can measure position, time, velocity,
and acceleration with astonishing, indeed "unreasonable," con-
sistency and precision (Wigner 1967).

Outside physics and chemistry, this direct measurement of
integrals with precision equivalent to that of integrands appears
flatly impossible. In sect. 2, para. 2, Schoemaker claims that the
maximand F(x,y) that integrates an exact law y = f(x) must be
"plausible." He ignores a far more crucial requirement: F must
be explicitly measurable independently of/, like energy vis-a-
vis motion or bending of light around the sun vis-a-vis gravita-
tion. Otherwise the integration to optimality is mere mathe-
matical rhetoric without any empirical consequences. But this
"otherwise" includes all the biological, psychological, and social
sciences.

Perhaps the commonest source of inappropriately "optimal"
quantities in science is an observer's preference for reporting
the values of quantities that do not change. A psychometrician,
for instance, prefers to study IQ as an "underlying factor" that
can be postulated not to vary by age: an invariant over a universe
of virtual changes in test composition. A tautology from factor
analysis transforms the purported invariance (stability against
substitution of test items) into an optimality (of explained
covariance). In this way, entirely by artifact, IQ becomes a
construct that optimally "explains" performance on its sub tests.
A similar adulteration of science by optimization is the invoca-

tion of parameters of linear regressions — optimizing (least-
squares) fits to observed data - as if they meant something other
than the so-called normal equations, the equations of decom-
position by paths (Wright 1954) that underlie the usual for-
mulas. An average, for instance, is least-squares because the
sum of deviations about it is zero - because the data balance
there. Unless we can explicitly measure that sum of squares, the
relevant property of the average is not this optimal integral but
the zeroing. Nor is the magnitude of a correlation evidence of
"optimality" of anything: Sums of squares are not independently
measureable (except in physics).

Schoemaker asks his commentators to clarify "to what extent
they deem optimality . . . to be in the eye of the beholder
versus part of nature." I would counter that optimality is in the
mouth of the beholder, not the eye. When optimal principles
help us solve numerical problems in the physical sciences, it is
because they are mathematically equivalent to the exact con-
straints that in fact apply throughout the universe. In all other
sciences, the failure of optimality principles to lead to knowl-
edge derives from the absence of exact constraints and observ-
able zeroes of derivatives: The optimality heuristic does not lead
to new knowledge because it does not lead to new measure-
ments. From neuropsychology through economics (see Mc-
Closky 1985) and beyond, there seem to be no invariants
available on which the mathematical rhetoric of optimality can
usefully work. Outside physics, whenever scientists properly
attend to the quantities that they claim to be measuring, and to
the evidence that such quantities are invariable, the "explana-
tions" embodied in the language of optimality will be found
irrelevant to the understanding of empirical patterns. I am thus
much more pessimistic than the author about the potential of
this "heuristic" for advancing reliable knowledge.

The quest for plausibility:
A negative heuristic for science?
R. W. Byrne
Scottish Primate Research Group, Department of Psychology, University of
St. Andrews, St. Andrews, Fife KY16 9JU Scotland
Electronic mail: pss10(wst-andrews.ac.uk

Schoemaker's argument that optimality principles cannot be
any more than heuristics boils down to the demonstration that
these principles have worked well in sciences where their
justification is implausible, yet they have been found less useful
just in those fields where they should - he believes - apply
most. This appeal to plausibility is explicit: "The value of any
particular optimality model depends in a large measure on its
plausibility," and the notion of plausibility used is whether the
entities the science deals with might be imagined to want an
optimal solution. Thus, in the physical sciences, which "lack the
conscious striving and forethought characteristic of humans,"
Schoemaker deems it a priori unlikely that optimality should
have much mileage, so he is surprised how useful principles like
Fermat's have been. Whereas the social sciences "have con-
scious striving as a condition favourable to optimality argu-
ments," even in biology, the plausibility of optimality is seen as
plausibility of purposes: "Animals are less deliberately purpos-
ive, whereas plants and lower organisms are mostly passive
participants in the process of natural selection."

Plausibility may seem a plausible heuristic, but consider the
statements:

(1) The balloon wants to equalize its interior pressure.
(2) The plant wants to maximize its rate of gene survival.
(3) The baboon wants to manipulate the other to support it.
(4) The baby wants its mother's comfort.
(5) The businessman wants to get rich.
(6) The lecturer wants the student to understand.
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No scientist has problems with statements (1) and (2), which are
obviously teleological shorthand for more laborious non-
teleological explanations (though this is culture-specific: Some
people find "My birth wants me to be happy" an entirely literal
description of fact).

Most ethologists and psychologists consider it quite possible
that baboons or babies may have purposes of the kinds implied
in (3) and (4); but whether they do is hard to test, and quite
irrelevant for understanding most of their behaviour - including
whether an optimality principle such as natural selection has
moulded their behaviour to what we observe. Thus they treat
the statements as teleological shorthand for other types of
explanation, except in those (albeit very interesting) cases
where the mental processes of animal or child are specifically at
issue. The problem of whether the lags inherent in natural
selection make It likely that a current form is "ideal" at the
moment or still slowly evolving toward an ever-changing op-
timum, Is a quite unrelated issue, clearly easier to resolve for a
relatively static genus like Nautilus than for Homo.

It is certainly plausible that businessmen might want riches,
but this has little bearing on whether their behaviour obeys an
optimality principle, let alone whether their behaviour is "a
good thing" for anyone else, or the economy. A teacher is
perhaps more likely to close on an optimum style more quickly,
the firmer the intention is to communicate - but other factors
may have greater importance than mere wanting. Indeed, it is
far more likely that a plant will optimize, since the very flexibil-
ity and adaptibility of human behaviour makes nonoptimal acts
slower to be weeded out. Schoemaker is aware of this, and to
some extent his dilemma Is a straw man. But If some people in
the social sciences are really getting in a muddle between the
literal fact of wanting an ideal and the teleological shorthand of
optimality principles, then perhaps it would be helpful to try a
temporary ban on all literal meanings of mental state terms, in
favour of treating them all as if in quotes, even In cases where
conscious striving towards an end is plausible or provable. This,
I suppose, is what radical behaviourism tried to do for psycholo-
gy - except that behaviourists forgot to mention the "tem-
porarily" qualifier!

Criteria for optimality

Michel Cabanac
Department of Physiology, Laval University, Quebec G1K 7P4, Canada
Electronic mail: cabanac@lavalvm1 .bitnet

The word optimal Is derived from the Latin optimum, the
best. The word is therefore comparative and Implies a refer-
ence. All the problem of choosing between "optimality, a
principle of nature" versus "optimality is all in your mind" lies in
the frame of reference. One may consider, as pointed out by
Schoemaker, that all of science is a set of conventions, and hence
when we discern a general principle of nature it is also an
artificial construction of the human mind. What Is at stake Is no
less than the nature of mind and of science. Yet one should not
question again and again the reality of the outside world, and
whether what we perceive is reality or illusion. The problem has
been solved by Descartes. Let us take it for granted that we
think within boundaries. Now, within these boundaries, the
concept of optimality must obey the rules of science. We must
have in our possession criteria of optimality. When we decide
that a system maximizes a variable to a value that we declare
optimal we must be able to discern a finality for the observed
maximization.

Schoemaker's skepticism about optimality is welcome when
optimality Is used as a petitio principii, which is often the case in
ethology. Yet there are cases where the circularity of the
concept of optimality can be opened, where the word refers to

an identifiable criterion. Biology and economics provide exam-
ples where optimal behavior can be measured against reproduc-
tive and physiological fitness or against financial efficacy. With-
out such a criterion the optimality of a system remains a mere
description, as seems to be the case when it is used in physical
sciences.

When male dungflies sit copulating with females long enough
to maximize the number of eggs fertilized, and short enough to
allow time to search for new females (Parker 1978), their behav-
ior may be considered optimal from the point of view of popula-
tion genetics. When subjects placed in a conflict of motive -
fatigue versus cold discomfort - maximize sensory pleasure and
thus both thermoregulate and avoid tachycardia (Cabanac &
LeBlanc 1983), one can consider their behavioral choice as
optimal from the point of view of physiology. When a broker
chooses an investment with maximal return and minimal risk,
this behavior can be considered optimal from the point of view of
the client's income.

On the other hand, I fall to see In the maximization of entropy
In a steady state or in a parabola a finality homologous to the
survival and profitability found In the above examples from
biology and economics. In this biologist's possibly blind eye,
entropy, steady state, and parabola are nothing more than
descriptions. I fail to see which nonsubjective criteria can be
applied to the optimality examples selected by Schoemaker in
the realms of physics and chemistry. In these sciences one can
Indeed define metaphysical criteria of optimality as seen from an
eschatological point of view but it should be made clear at the
same time that this Is not science. Schoemaker suggests that
there might be a general organizing principle of optimality In
nature, but in accepting such a principle one also leaves the
strict realm of science.

S@m@ optimality principles in ©wolution

James F. Crow
Genetics Department, University of Wisconsin, Madison, Wl 53706
Electronic mail: wrengels@wiscmacc.bitnet

Schoemaker's target article points out a number of ways in
which optimality principles have been used in science. I would
like to follow his lead and mention a few more, from evolution-
ary theory.

The most popular general quantitative statement in evolution
is E. A. Fisher's (1930/1958, p. 37) fundamental theorem of
natural selection. In his words, "the rate of increase in fitness of
any organism at any time is equal to its genetic variance in fitness
at that time." Fitness is the capacity to survive and reproduce.
Fisher's preferred measure of fitness is the intrinsic rate of
increase (which he calls, appropriately, the Malthusian param-
eter, m), the solution of the equation

9-mxlh fa =

in which lx and dx are the probabilities of surviving to age x and of
reproducing at that age. The genetic variance (now usually
called the genie or additive genetic variance) is the variance of
the least squares estimates of the genotypic fitnesses. Fisher
likened his principle of Increasing fitness to the increase of
entropy in a physical system.

It Is obvious that evolutionary progress depends on genetic
variation; it Is not so obvious that the relevant metric is the genie
variance. The theorem's importance, or at least Its fascination, Is
evidenced by the flood of discussion it has elicited. Fisher's
elegant opacity leaves room for a seemingly endless string of
interpretations of what he really meant. There are also exten-
sions to make the theorem more exact and more comprehen-
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sive. It is too much, with all the friction and noise of biological
systems (especially with Mendelism), to expect a formulation
that is at once simple, exact, and complete. If treated as a good
approximation, however, Fisher's theorem packs a great deal of
evolutionary insight into a simple statement. For the rate of
change of a trait correlated with fitness, such as a performance
character in livestock, the genie variance is replaced by the
genie covariance of the trait with fitness (for a recent article see
Nagylaki 1989).

More relevant to Schoemaker's discussion is the theorem in
integrated form: When selection moves a population from one
state to another, the difference in the fitness (or correlated
character) of the two states is equal to the genie variance (or
covariance) summed over the time required to move from one
state to the other.

But does the population follow an optimum path? The answer
is yes. Svirezhev (1972) has provided such an interpretation by
finding the appropriate Lagrangian. Since this work was pub-
lished in Russian, it is not widely known in English-speaking
countries. Consider a single locus in which the i-th allele has
frequency p.. Svirezhev integrated the quantity

• 2

2 - + X p/m, - m)2
i Pi i

over the path from tl when the population is in state 1 to t2 when
the population is in state 2. The superior dot indicates the time
derivative, and mi is the mean fitness of all genotypes containing
the t-th allele. Svirezhev showed that the population follows a
trajectory so that this quantity, when integrated along the path,
is stationary. The first and second terms can be roughly com-
pared to kinetic and potential energy.

What is important from the evolutionary standpoint is that,
for a randomly mating population, this quantity is also Fisher's
genie variance. The second term is obviously half the genie
variance (the factor 2 comes from diploidy). For the first, note
that

Pi = vk™>i - rti)

so the first term, too, is half the genie variance.
We arrive, with Svirezhev, at the statement that natural

selection operates in such a way that the path followed as a
population changes from one state to another is the one that
minimizes the total genie variance over the path. Evolution gets
the biggest fitness bang for the variance buck.

If this principle had been discovered in an earlier century it
might have been regarded as evidence of an all-wise, optimizing
Creator. Today it is placed on a lower pedestal, but it has (to me,
at least) great appeal. Just as one can obtain Newton's laws from
the principle of least action, one can find the equations of gene-
frequency and fitness change from Svirezhev's principle.

Recent work in evolutionary theory has usually dealt with
such more limited, but more concrete subjects as evolution of
the sex ratio and stochastic theories of molecular evolution.
Some examples are mentioned in Schoemaker's article. The
"least variance" principle has not so far had the heuristic value
that its counterparts in physics have had. Yet, its elegance has
aesthetic appeal and it provides another, possibly insightful way
of looking at evolution.

Natural selection doesn't hawe goals,
but it's the reason organisms do

Martin Daly
Departments of Psychology and Biology, Me Master University, Hamilton,
Ontario, Canada L8S 4K1
Electronic mail: daly@mcmaster.bitnet

It seems to me that Schoemaker misconceives the unifying
principle of the life sciences when he equates natural selection
with goal-directed striving. Darwin himself perpetrated such a
vitalistic analogy when he made "nature" an agent that "se-
lects," but Darwin understood full well that the selective pro-
cess has no goals of its own. It is instead the reason entities that
do have goals exist. Schoemaker never quite succeeds in artic-
ulating a fundamental distinction between living and lifeless
systems: Purposive ("teleological") concepts are properly ap-
plied to organisms because they have goal-seeking processes
instantiated in their structures as a result of the evolutionary
process, whereas the application of such concepts to lifeless
phenomena always entails an analogy to organisms. The conse-
quences of biological phenomena constitute a legitimate and
essential part of their explanation: What they achieve is in a
concrete sense why they exist. The same cannot be said of
lifeless phenomena. Contra Schoemaker, it was not thanks to
Hobbes or Hume that "the coexistence of physical determina-
tion and purposiveness has become less problematic." It was
thanks to Darwin.

Immediately after referring to optimality models of sex alloca-
tion, foraging, and mate choice, Schoemaker concludes, "In
biology, selection is presumed to operate at the species, orga-
nism as well as genome levels." This is incorrect and betrays an
incomprehension of the "levels of selection" arguments in
biology. All the authors cited in this section reject species-level
selection as a source of adaptation. Moreover, the "organism"
and the "genome" represent the same "level of selection"; what
is most commonly at issue is whether selection is more usefully
construed as taking place between whole genomes (organisms)
or between components thereof (Cosmides & Tooby 1981;
Dawkins 1982).

Schoemaker proceeds to note that "sociology or anthropology
generally do not claim (either quantitatively or qualitatively)
that their societies, structure or processes are, in a general
sense, optimal." But it is not that "functional" theories have
rarely been advanced in these disciplines. Rather, sociological
and anthropological functionalisms have generally failed misera-
bly, for reasons transparent to a Darwinian: There is no rationale
for expecting societies to function as if they had "purposes,"
because there is no process that could plausibly provide them
with the sort of integrated "designs" and goal-directedness that
selection gives to individual organisms. An individual organism
manifests integrated purposiveness because the fitnesses of its
constituent genes and coreplicons (Cosmides & Tooby 1981)
strongly covary and have been selected to "cooperate." A
society, by contrast, lacks integrated purposiveness because its
constituent organisms routinely achieve fitness at one another's
expense. Those who postulate adaptive functions of society are
seeking functionality at an inappropriate level of the hierarchy of
life (Williams 1966).

Schoemaker cites Gould & Lewontin's (1979) notorious cri-
tique of "adaptationism" with evident admiration, and demands
"how many falsifications are needed before the underlying
theory or paradigm is questioned" (Footnote 5). The answer is
that the falsification of particular adaptationist hypotheses does
not and should not call adaptationism into question. The failure
of the hypothesis that the heart is an organ of cognition was no
reason to abandon the search for its real function.

Adaptationism, the paradigm that views organisms as com-
plex adaptive machines whose parts have adaptive functions
subsidiary to the fitness-promoting function of the whole, is
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today about as basic to biology as the atomic theory is to
chemistry. And about as controversial. Explicitly adaptationist
approaches are ascendant in the sciences of ecology, ethology,
and evolution because they have proven essential to discovery;
if you doubt this claim, look at the journals. Gould & Lewontin's
call for an alternative paradigm has failed to impress practicing
biologists both because adaptationism is successful and well-
founded, and because its critics have no alternative research
program to offer. Each year sees the establishment of such new
journals as Functional Biology and Behavioral Ecology. Suffi-
cient research to fill a first issue of Dialectical Biology has yet to
materialize.

As a "second reason for being suspicious of grand optimality
principles," Schoemaker notes "that they were posited by
creatures who themselves are part of the world they seek to
describe" with species-specific sensory, perceptual, and cog-
nitive constraints. Our limitations in these regards constrain all
of science, and they constrain unscientific ways of knowing, too.
Schoemaker offers no rationale for considering this ubiquitous
problem to be especially a nuisance with respect to optimality
arguments.

Organisms, scientists and optimality

Michael Davison
Psychology Department, University of Auckland, Auckland, New Zealand
Electronic mail: mcdop@ccu1.aukuni.ac.nz

Scientific explanations. Everything a human or animal or star
or stone does is rational - it has a reason, even though this
reason may be rooted in chaos. This is the working hypothesis of
science. We may understand these reasons in some sense: We
may be able to state something about the precursors of that
behavior and be aware that those events often precede the event
in question; we may know something of the way the system is
constructed and that the event to be explained has a reasonably
high frequency of occurrence under a variety of conditions; or
we may be able to point to a likely future event that will probably
follow the event to be explained. All these are explanations of
some sort - respectively, historical, structural, and teleological
ones. Each of these, to be able to function as an explanation,
represents a high correlation between something and the event
to be explained. A pigeon pecks at a grain because it has not
eaten recently, because it is hungry, and because it wants to eat.
Each of these may be a sufficient explanation for some purpose
and for some audience.

I would like to look at these three sorts of explanations, and to
judge them on their completeness for explaining behavior, and
on their mutual independence. First, the teleological expla-
nation.

If I explain an animal's behavior in such terms as "it wanted to
eat," I seem to be making an indirect statement about the
current state of the system: It is a hungry system. This is perhaps
sufficient to tell me that it is likely to do something to eat, but not
specifically what it will do on the way to eating. What specifically
is done depends on the sort of system it is and on the current
environment in which it finds itself. So the teleological explana-
tion is, I suggest, a partial, indirect structural explanation of the
current state of the organism. A teleological explanation can
stimulate the mind (sect. 4), but it also has another property:
that of satisfying the mind. Satisfaction through partial explana-
tion is surely not what we need.

Teleological explanation has a further problem. Although it
may embody a summary of some of the knowledge that we as
scientists need to have about the current state of the system at
the time the behavior is emitted, the explanation cannot easily
be used to predict the future occurrence of the behavior be-
cause, when it is used, it is a post-hoc explanation - at least until

an explanation of this type can be sustained at a very high level.
Optimality explanations purport to have reached this level and
so can be used in a predictive way.

As suggested above, teleological explanations are incomplete,
and we also need to know something of the structure of the
system — what system it is, and what its history is. One could
argue that the historical data are unnecessary because a full
optimality account could take a system from an arbitrary starting
point and predict the trajectory it would take over a substantial
time period while it approached some stable state in some
predictable environment. Unless the system has a very long
memory (for instance, being chaotically sensitive to initial con-
ditions), historical data may become available within the terms
of the explanation. The final argument might be that the princi-
ple of optimality is independent of the sort of system involved
(light and water, birds and food) and of what is optimized (time
traveling, rate of intake). So optimality, as a high-level tele-
ological explanation, could be complete in principle, and also in
application, given that we are clear about the structure of the
system under investigation.

But is it right? The problem is the example given in the target
article in section 3 - an asymptotically simple example, quite
unlike any situation that must be accounted for in the behavioral
sciences. The light ray must have "smelled" the water from a
distance and been ready to change direction instantly. It can't be
wrong, it can't be slow to react, the experimenter (or nature
generally) can't surprise the ray, it can't forget, it can't learn. It is
truly an optimal system. The explanation in terms of minimizing
time can fit what happens perfectly, but it simply cannot be what
happens. The problem is in the minimizing time from A to B -
the ray knows where B is before it has left A. I will return to
similar problems later.

As an explanation, the current state or structure of the
system, if one could take a snapshot of it, could in principle do a
good job of predicting at least the immediate likely future
behavior of the system. Such an explanation is in principle
complete, though in practice, because of technological limita-
tions, it is likely to remain incomplete. The completeness in
principle exists for one reason only - the current state of the
system, through various memorial processes (which may in
general extend back through many generations, but may also
strongly represent recent occurrences) is an encapsulation of the
system's history - in behavioral terms, the history of the orga-
nism and of the environment in which it lives and has lived. It is
in the merging of these twin histories that explanation ultimate-
ly resides.

I suggest therefore that explanations in terms of the future
and the present both ultimately reside in the past, and it is there
we must look for explanations that are both in principle com-
plete and technologically feasible (at least to a reasonable
accuracy).

I have above approached the problems of explanation from
the point of view of a behavioral scientist, which is quite
different from the approach that might be taken by a classical
physicist. The physical sciences have developed and blossomed
by dealing effectively with very simple systems compared with
those that are the subject matter of the behavioral sciences. It is,
indeed, only since the acknowledgment of chaos that the phys-
ical sciences have begun to be confronted with system behaviors
that are similar to the starting point and irreducible data of the
behavioral sciences. Behavioral scientists have, I believe, a
rather better appreciation of the promises and pitfalls of the
varieties of explanation than do most physical scientists. Behav-
ioral scientists appreciate the disastrous effects of teleological
explanations of behavior provided by the media. It is all too
difficult to convince a public fed such pap that there are real
questions about the causes of behavior and of events generally.

Optimality in the behawioral sciences. Let me start by saying
that, so far as I know, assumptions that animals or humans will
behave so as to optimize some currency in their transactions
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with their environments have not been sustained with any
generality. For example, in signal-detection theory, the clas-
sical assumption that animals and humans behave so as to
maximize their payoff probabilities does not describe the sub-
jects' behavior (e.g., Hume & Irwin 1974; McCarthy & Davison
1984). Rather, animals and humans behave nonoptimally. In the
study of animals foraging in patches in which there may or may
not be a prey item, animals generally stay longer than the time
that would maximize their rates of prey intake. And in simple
choice situations, animals change neither their rates of perfor-
mance nor their distributions of choices between alternatives in
a way that maximizes their rates of food intake (e.g., Davison &
Kerr 1989; Vaughan & Miller 1984). If animals are rational, then
either rationality does not imply optimization, or animals are not
being rational about things that psychologists think they should
be rational about. We can add the traditional epicycles: The
subjects are optimizing something else; we need to include the
costs as well as the payoffs of behavior; we need to include the
costs and payoffs of leisure; we need to consider the type of
economy in which the subjects are working, and so on. Yes, the
optimality approach has stimulated research (sect. 4), but I think
that the long-term value of such hypothetico-deductive cuts and
thrusts is doubtful, and begins to resemble the celebrated and
sterile Hull-Tolman controversy. Often those of us who are
more interested in empirically based research are asked by
journal editors and reviewers to take a stand for or against
particular theories, because it seems that everyone is con-
strained to stand somewhere on this polygon. This rather strains
the idea of "stimulating research."

Having taken this empirical stand against a blinkered op-
timization approach (and having been told by one of the devel-
opers of signal-detection theory that testing the theory was
inappropriate because data were irrelevant to the theory itself),
I must now stand back and ask, "What is an optimality ap-
proach?" — or, perhaps, "What is not an optimality approach?"
The light ray described in the target article is an example of an
omniscient, instantaneous optimality. Wherever the ray starts,
it already "smells" all its future and "knows" all its subsequent B
locations. It has no desire ever to arrive at C, and there is no way
we can ever change its preordained path. It tries, always suc-
cessfully, to minimize its lifespan. The sun to my left has already
smelled my spectacle lenses, and its rays already know when I
will turn my head. If this is optimality, then it happily contains
within it, already, a description of my future behavior and my
future environment. Either this is terribly important, the final
unifying insight of all science, or it is silly.

In the behavioral sciences, a rankly optimal approach has a
number of characteristics that can be seen as degradations of the
light-ray case.

(1) some rationally derived function, simple or complex, is
maximized or minimized;

(2) this maximization may be subject to various constraints;
(2a) constraints on the discrimination of the independent

variable values, either singly or severally, either independently
or interactively;

(2b) constraints on the output of the organism in the same
ways;

(2c) constraints on the time and history of the organism's
functioning - the window or time horizon over which the
maximization will take place. This will determine, for instance,
whether the organism can smell distant peaks or will "satisfice '
on local hills.

(2d) the variance in the environment over time, in conjunc-
tion with (2c), will constrain molar optimality, and depending on
the above constraints, including sensitivity to variance and to
trends, will constrain molecular optimality. The light ray is
affected by none of these constraints. It is these constraints that
will allow an optimality theorist to satisfice on suboptimal
experimental predictions, at least at an early stage in the devel-
opment of such a theory.

Other theories are couched in less obvious optimality terms.
For instance, according to melioration theory (Herrnstein &
Vaughan 1980), an animal subject to constraints will reallocate
time spent between available alternative choices so as to equal-
ize the local rates of goods obtained from each alternative. This
is an optimality theory because the subject minimizes the
difference between local rates of goods. As another example, let
us entertain a theory about animals foraging in patches that may
contain a prey item. Maybe it gives up on a patch when the
hyperbolic value of the delayed items that may remain falls
below the hyperbolic value of traveling to a new patch (this
theory does rather better, at least in some cases, than does
maximizing overall prey-rate theories). Is this new theory an
optimality theory? Again, yes, because the animal's behavior
changes so as to equalize (or minimize differences between) two
or more continuously calculated variables, subject to con-
straints.

By this line of reasoning, I come to the conclusion that all
theories can be interpreted, in one way or another, as optimality
theories. The equality sign (or any other relationship sign)
brings with it a possible optimization interpretation. I suspect,
therefore, that optimality approaches are absolutely fundamen-
tal to all quantitative science — both as a metaphysics in giving
the illusion of understanding, and as a heuristic, providing some
motivation and organization for enquiry. But optimality ap-
proaches are just one of many ways of providing a metaphysic
and heuristic, and thus they are not unique. I guess the major
problem for me is when optimality approaches are used nor-
matively and as a kind of behavioral commandment, I feel this is
the way I should behave to get the most out of life. If theories are
used in such a way, then I should soon be able to buy an
Optimality Calculator to which I can input my current choice
alternatives and calculate, for example, my optimal tennis
stroke (the example used by Herrnstein 1990), and maximize
the probability of my winning a game. The fascinating question
is whether or not I will feel happier about the outcome. I suspect
not: Despite the objective evidence that my game had improved
significantly, I think I would still harbor the belief that I could do
better, probably by reverting to my previous style. Such ques-
tions should also be asked about the machines that determine,
via optimality models, whether a nuclear counterstrike should
be ordered, and how it should "best" proceed. The results may
be optimal for the machines and the theories, but are they
optimal for humans?

The goal of science is to predict the future output of systems.
This was relatively easily attained in the classical physical
science of idealized systems, but the science of chaos, be it
physics or behavior, requires system and environmental history
for explanation. Simple dissipative systems - e . g . , a pendulum
with friction - predictably move to simple minimized states,
and can be described as optimizing. But the dynamical systems
of animal behavior or chemical reactions can come to what is
known as a detailed balance at many and varied points, and they
are often subject to dependence on initial conditions. To search
behavior for explanations armed only with optimality is not an
optimum strategy for understanding.

Vaulting optimality

Peter Dayana and Jon Oberlanderb

aCentre for Cognitive Science, Department of Physics, and bHuman
Communication Research Centre, University of Edinburgh, Edinburgh EH8
9LW, Scotland
Electronic mail: adayan(wcns.ed.ac.uk and bjon@cogsci.ed.ac.uk

The target article provokes three comments and one more
general criticism. First, the reason it is not surprising that "[the
optimality heuristic] is used most systematically and successful-
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ly in the physical sciences . . . arid least in the social sciences" is
not its increased plasticity, as is claimed. Rather, it is the greater
accuracy and wider applicability of mathematical models in the
physical sciences. As Schoemaker amply points out, the equa-
tions governing many physical dynamical systems can be viewed
through the smoky glass of optimising principles. But in the
social sciences it is rather easy to provide myriad examples to
refute a hypothesis with substantial quantitative rather than just
qualitative import. Optimality hypotheses, dealing in quan-
tities, are hard to come by because quantitative hypotheses in
general are hard to come by.

Second, equilibria and optimality bear a more complex rela-
tionship to each other than is revealed by viewing the former as
just "minimising a difference function defined on the actual and
ideal states," as suggested in the context of chemical equilibria.
For example, Maynard Smith's (1974) evolutionarily stable
strategies (ESSs), which are indeed equilibria, might often be
better viewed as suboptimal, in terms of different criteria.

A third point is that the issues the target article highlights are
slightly obscured by the absence of a distinction between the
messages that might be better directed at general explanation in
science and those that are specific to optimality principles. For
example, of the eight features of the optimality heuristic, only
the fourth, "teleological description of the system," is really
confined to optimality; all the others seem to be perfectly
general. "Confirmation bias" is also not restricted to this
heuristic.

The more general criticism can be seen clearly in a paradig-
matic environment for the optimality heuristic - cognitive
science. Humans are entities for which both teleological and
causal explanations may genuinely invoke processes of optimisa-
tion, whereas with water or exchange rates, only the teleological
explanations trade on optimisation. As seen in the target article,
optimality assumptions are rife at the "higher" cognitive levels,
for instance in postulates concerning rationality; but they have
also been made about the "lower" subpersonal levels, for exam-
ple in postulates concerning energy minimisation for constraint
satisfaction. Unfortunately, only the significance of levels of
explanation and description is ever alluded to. The claim is
made, for instance, partly in the context of economic explana-
tion, that "each optimality principle, it seems, begs for an
associated process explanation that describes causally, within
the constraints of an organism or system, how it operates."
Surely this confuses the levels.

For concreteness (rather than correctness, Foster 1990),
consider Marr's three levels (Marr 1982). At the computational
level, the task a system performs is described and possibly
justified on the grounds of appropriateness; at the algorithmic
level, representations commensurate with the task and the
algorithm by which it is carried out are defined; and at the
implementational level, the precise physical realisation of
the algorithm is described. As Fodor teaches (Fodor 1975), the
fact that psychology has an independent existence at all is a
function of the different modes of theoretical explanation at
these different levels. The target article suggests an unhap-
piness with a computational-level optimality principle unless its
algorithmic and/or implementational level are also evident.
This is unlikely to be a fruitful methodological restriction.

In this context, questions about the use of optimality should
be directed at the computational level. How felicitous is it to
suppose that human cognition is optimising some measure? The
quick-footedness Gould and Lewontin (1979) note is also evi-
dent in the discussion of planning under the assumptions of
bounded rationality, as seen in a dispute between Dennett and
Fodor (Dennett 1987; Fodor 1981). Fodor criticises Dennett for
being too wedded to predicting others' actions on the basis of
assumed rationality, meaning rationality in the narrow sense
defined in the target article. Dennett responds that rationality is
inevitably bound in terms of the time and space available for
processing, and it is therefore appropriate to predict assuming

these bounds. But this threatens to make the notion of optimisa-
tion too trivial to be of value.

In drawing our attention back to the uses and abuses of
optimality, the target article raises a number of important
hurdles that users of optimality principles should vault. Need-
less to say, cognitive science is "tripping" happily.

Optimality and constraint

David A. Helwega and Herbert L. Roitblatb

Department of Psychology, University of Hawaii at Manoa, 2430 Campus
Road, Honolulu, HI 96822
Electronic mail: adavidh@uhccux.hitnet; bherbert@uhccux.bitnet

Optimality theories have found widespread application in di-
verse fields such as physics, economics, and ethology. The value
or validity of using an optimal decision theory to analyze animal
behavior (including human behavior) periodically comes into
question. Investigators have raised a number of criticisms op-
posing optimality as an ecological criterion. Among these are
attacks on the rationality assumption of optimal decision theory
and the capability of animals to perform the necessary computa-
tions for behaving rationally.

There seems to be some confusion about the nature of op-
timization. As Schoemaker notes, the concept of optimality does
not refer to perfection in the sense of an achieved goal, it refers
rather to preference for alternatives that maximize the relevant
currency. In biological systems, inclusive fitness is the ultimate
currency. Natural selection is perforce an optimizing function in
that it selects from a set of alternatives those that are more
successful at reproducing their genetic copies. Natural selection
ranks genotypes in order of their fitness, and selects those that
are most fit. An individual that failed to maximize its fitness
would quickly (in evolutionary time) be replaced by an indi-
vidual that was more successful at maximizing its fitness.

Although inclusive fitness provides a powerful argument for
the use of optimality as an explanatory factor in animal behavior,
specific analyses frequently have to use such a more proximal
currency as energy or risk of predation. The use of a proxi-
mal currency is a simplification. It does not deny that the real
currency is fitness, it merely acknowledges that this currency
may be too complexly related to the specific behaviors under
consideration to make useful predictions. This simplification is
for the benefit of the investigators, rather than a strong assump-
tion about the factors that control the animal's behavior. As
scientists we can consider only a few variables at a time. Of
these, our tendency is to select (at least initially) those that are
most salient and that correspond to the largest differences in the
phenomena we are investigating.

Another important confusion concerns the relation between
the optimum as a goal and the process of optimization as a
mechanism. For example, one argument is that "populations
may spend more time tracking moving fitness optima (climbing
adaptive peaks) than they do sitting at the summit optima"
(Cody 1974, in Pierce & Ollason 1987, p. 113), a criticism that is
repeated in the Conclusions of the target article. This criticism
conflates the existence of optima in a landscape with the process
of optimizing. Optimizing is the process of approaching a max-
imum (or minimum); it is not the maximum (or minimum) itself.
A phenotype that does not perform as well as possible (e.g., by
satisficing) will lose to a competitor that does. This is as true for
an animal that is competing against other animals as for one
competing against the environment (Maynard Smith 1978), an
artificial dichotomy that obscures the fact that game theory is an
optimal decision theory. The key point is that an optimizing
animal is performing as well as it can, subject to constraints
(Roitblat 1982). Organisms are subject to many constraints,
including structural ones introduced during their evolutionary
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history (Gould & Lewontin 1979), limited capacity to obtain and
process relevant information (Kamil 1978; Kamil & Roitblat
1985; Krebs et al. 1978), locomotor limitations, competing
demands (Houston & McNamara 1987), and many others. An
unconstrained (e.g., omniscient) animal would experience infin-
ite fitness. Infinite fitness, however, is obviously unattainable.
For example, an animal with infinite gonads might be able to
produce an infinite number of offspring, but the animal's in-
ability to move might subject it to infinite predation, thus
negating the benefit of gonad size. The maximally fit animal will
(inter alia) compromise between gonad size and mobility to
maximize its reproductive success.

A major criticism of the use of optimal decision theory is that
the models are too complex computationally to be used by any
real biological organism. This criticism stems from two miscon-
ceptions. The first is that the complexity of deriving a model is
confused with the complexity of the process that is being
modeled. The second is that the mechanisms animals use to
compute solutions are different from the computational mecha-
nisms used by mathematicians. For example, Houston and
McNamara (1988) provide a thorough review of the use of
dynamic programming to induce the decisions an animal should
make if it were acting in an optimal manner. The computational
complexity of dynamic programming is known to rise exponen-
tially as more variables and more states are added to a model. As
a result, some readers of Houston and McNamara felt that the
magnitude of the computations performed by the simplest of
dynamic programs was not within reach of many animal species
(cf. Clark 1990). This point is entirely irrelevant to use of optimal
decisions by the animal, however. The complexity of dynamic
programming is a difficulty that the investigator has in deriving a
prediction of what the animal can be expected to do. Dynamic
programming is an algorithm used by investigators; it is not, and
cannot be, a model of how the animal performs that computa-
tion. For example, computing the trajectory between two mov-
ing objects can be a computationally intense problem involving
the solution of multiple differential equations. When charac-
terized in this way, such computations would seem to be beyond
the capabilities of most animals, but many dogs are adept at
catching flying frisbees, because they have a nervous system
that automatically and implicitly computes such solutions. Dogs
do not need to know differential calculus to catch frisbees and
foraging animals do not need to know dynamic programming to
select optimal decisions.

Recent developments in artificial neural networks (e.g.,
Wasserman 1989) suggest ways that animals could compute the
solution to highly complex problems by using only very simple
computational mechanisms. Artificial neural networks are mas-
sively parallel systems that contain complexly interconnected
networks of very simple computational elements or concep-
tual neurons. [See Hanson & Burr: "What Connectionist Mod-
els Learn: Learning and Representation in Connectionist Net-
works" BBS 13(3)1990.] These elements receive inputs over
weighted connections, and produce outputs as a function of the
weighted sum of these inputs. Although each element in the
network has very limited computational capacity, a three-layer
network can compute any arbitrary function (Hecht-Nielsen
1987). Artificial neural networks have been derived that rapidly
compute the solution to such highly complex constraint satisfac-
tion problems as the travelling salesperson (TSP) problem (e.g.,
Kirkpatrick et al. 1983). We have designed a simple neural
network that simulates an individual fledging decision, as de-
scribed by Clark (1990, sect. 5) for murres. We generated a
dataset that contained the variables body weight, day of season,
and the decision (fledge or remain in nest) from the equations
provided by Clark. Each case represented the fledging decision
of one murre that managed to survive at least until the end of the
simulated season. The data were presented to a backpropaga-
tion neural network that consisted of two input neurons (weight,
day), a two-unit hidden layer, and one output neuron (fledging

decision). The network successfully learned to compute a fledg-
ing decision based on these examples of previous successful
fledging decisions in a way analogous to that by which evolution
could select (over multiple generations) networks with the
appropriate connections and weights. The point of this demon-
stration is that a simple network, consisting of very simple
elements, and working with past successful examples, is suffi-
cient to solve a problem previously modelled using a complex
dynamic programming algorithm. Moreover, network model-
ling of this sort has the potential for widespread application
rather than being constrained to a given species. The network
may or may not be useful in deriving predictions for the animal's
optimal behavior (we think such models can be useful), but it
does show how such solutions could be computed. Computa-
tional complexity may thus provide a constraint on our ability to
develop models of the animal's behavior, but it is not likely to be
particularly relevant to the animal's ability to solve optimization
problems.

We agree with Schoemaker's hesitation in accepting the
evolutionary or ecological validity of the specific forms of some
optimal decision models. We do not share his reluctance to
accept optimization as a principle when dealing with animal
behavior, however. Optimal decision models are hypotheses
about the usefulness of certain variables in predicting animal
behavior. Behavioral ecology investigations are not ordinarily
directed at tests of the optimality assumption, per se; rather,
they are directed at assessing the validity of the variables
hypothesized to be the controlling factors. To recognize the
importance of constraints on optimality is not to deny the
usefulness of optimality theory. To argue for optimality is not
synonymous with panselectionism or perfectionism. Animals do
the best they can (i.e., optimize) with the information that they
have and within the limits of their ecology and structure.

Types of optimality: Who is the steersman?

Michael E. Hyland
Department of Psychology, Polytechnic South West, Plymouth, Devon PL4
8AA, England
Electronic mail: @prime-a.poly-south-west.ac.uk

It is important to distinguish between two types of optimality,
one that is not based on control theoretic principles and one that
is. Consider, first, optimality that is not based on control theory.
A lake has a relatively constant depth because the rate of flow out
of the lake is a function of the depth of the lake and hence of the
rate of flow of water into the lake. The lake does not "try" to have
a constant depth; nor was it designed in that way. The constant
depth is the consequence of the laws of nature, which are a
primitive or set by God. Whether God sets these laws out of
concern for lakes is uncertain. On the other hand, a ther-
mostatically controlled room heating system keeps a room at a
relatively constant temperature because the system is designed
by people, not God, to detect deviations from a person-deter-
mined optimum and elicit behavior (i.e., heating) that mini-
mizes those deviations.

Schoemaker (sect. 6, para. 3) writes, "To a large extent,
optimality is in the eye of the beholder." In the case of op-
timality without control (for example, the assertion that the lake
has an "optimum" depth), such optimality is entirely in the eye
of the beholder. Many of the examples given by Schoemaker, for
instance, natural selection, fall into this category. Organisms do
not seek an optimal form - it is a law of nature that the less
optimal are more likely to die. The law determines that which is
optimal not vice versa. It is possible to suppose that evolution
has a purpose, but if that assumption is made, then the purpose
is that of God (e.g., de Chardin 1968). If one does not accept
divine intervention, then such optimality is the consequence of
humans recognizing constancy in outputs of lawlike systems.
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On the other hand, human-made control systems (it is unclear
what Schoemaker [sect. 4, para. 2] means by distinguishing
cybernetic from homeostatic systems) have reference criteria (or
set points or goals) that can be described as optimal states and
that are the preferred states of people. This second type of
optimality is not in the eye of the beholder, but in the eye of the
person who constructs the system and consequently in the
public domain. The set point of a thermostat is indicated on a
dial, and the reference criteria of a robot are described in
technical manuals.

Some researchers, myself included, believe that a person
operates as a hierarchically organised control system (Carver &
Scheier 1982; Hyland 1988; Powers 1978). If that is the case,
then a person's reference criteria are optimal states, but they are
optimal states that are part of the person rather than part of the
outside observer. Where do people's reference criteria come
from? They do not come from other people, as in the case of a
robot. And few would argue that they come from God. It seems
that people have the capacity to create their own reference
criteria, or optimal states, and that these are theoretical rather
than in the public domain. That is an important difference
between the reference criteria of robots and those of people.

The scientist (who is an outside observer) needs to make
inferences about people's reference criteria (which are the-
oretical constructs), and this inferential process may be wrong.
Indeed, the rationality heuristic (Schoemaker, sect. 5) is based
on the assumption that people have a type of reference criterion
that they may not have or one from which discrepancies may not
produce appropriate action. The rationality heuristic may be in
the eye of the beholder for a quite different reason: because it is
wrong (e.g., Evans 1989).

Here is a final point about the relationship between ide-
ological and causal explanations. Some time ago, Lewin (1943)
argued that purposive explanations are causal because behavior
is caused by the organism having a representation of future
events prior to the behavior. Behavior is not (and cannot be)
caused by the future events themselves. Thus, if reasons are
used in Lewin's sense, the explanation is achieved, not by
providing a rational account of the behavior but by actors being
supposed to have had (from their own perspectives) a rational
account of that behavior. In terms of time perspective, control
theory is similar to Lewin's purposive explanations: Purpose is
explained in terms of representations of the future. The optimal
state, goal, or reference criterion is a steersman (from which the
word cybernetics derives) that guides action to where the
steersman wants to go. The fundamental question raised by
Schoemaker's quest for optimality is, "Who is the steersman —
God, man, or machine?"

Natural scienei
and optimally

science

Oleg Larichev
Institute for Systems Studies, Prospect 60 let Octjabrya, 117312, Moscow,
9, USSR.

I find the target article to be good and interesting, but I do not
agree with Schoemaker on some problems.

In analyzing the application of optimality principles in differ-
ent research fields, Schoemaker creates a fuzzy boundary be-
tween two different classes of problems: (a) Problems for which
it is possible to find reliable models (those that allow one to make
reliable predictions and that generate repeatable results), and
(b) problems for which the models depend on evident or hidden
assumptions made by the researchers. This boundary assigns
problems in natural sciences to the first class and divides into
two parts the problems in economics.

Optimality principles in the natural sciences (and partly in

economics) are very convenient techniques for describing the
objects under study; their utility in this respect does not need
further support. The success of optimality principles in explain-
ing and predicting events speaks for itself.

Temporary attractiveness on the part of some techniques can
be found very often in science; we have no universal techniques.
Our knowledge of the environment is also limited; we can have
relatively good models for some problems and relatively bad
ones for others: For example, current models for global climatic
changes are quite unreliable; in the future they will be more
reliable.

The biases cited by Schoemaker (sect. 6) pertain only to
economic problems. The example of Fermat's principle (sect. 3)
merely demonstrates normal scientific development: Scientists
usually make guesses or propose the hypotheses; eventually one
finds a rigorous theoretical basis for confirming (or rejecting)
these guesses.

Things are quite different in economics. For one class of
problems there are the attempts to construct "objective mod-
els." For example, Wagner (1969) proposes "the objectivity
principle." Two researchers working on the same problem must
derive the same model. In such models human freedom of
behavior is eliminated; people are subordinated to the logic of
the objective model (e.g., Wagner 1969, the transportation
problem). (By the way, optimality principles are dominant in
operations research.) In economics, however, there is a wide
class of problems in which people do have freedom of behavior,
and many results from psychology and sociology demonstrate
the limited nature of human rationality.

We now have two "rationality camps" (Jungerman 1983), with
the followers of classical rationality theory and utility theory
providing their respective supporting arguments (cf.
Schoemaker, sect. 5) But lately there have been more and more
confirmations of the limits on human rationality. For example,
human behavior in real life problems of multiattribute classifica-
tion (Larichev & Moshkovich 1988) cannot be explained by
Multi Attribute Utility Theory (MAUT) or Subjective Expected
Utility (SEU). We see instances of limited rationality not only in
laboratory tasks performed by the students, but in decision
makers' behavior.

Yet there are significant differences among the ways that
limited rationality demonstrates itself: The performance of ex-
perts and decision makers rarely gives rise to contradictions (as
that of students does); experts usually simplify complex prob-
lems in dramatic ways.

There are two reasons why the rationality heuristic has flour-
ished in economics. First, the means of testing it in human
behavior are often connected with averaging over many deci-
sions, the majority of which are quite simple (one alternative is
dominant or quasidominant). The second reason is mentioned
by Schoemaker (sect. 5): It is always possible, for example, to
find explanations of human behavior in terms of SEU theory.
But predictions of human behavior with the SEU model are very
unreliable and even subjective.

It is now time to touch on the very base of utility theory,
which provides a foundation for a theory of rational behavior.
Many of its underlying assumptions can now be called
unjustified.

First let us consider measurement. Von Neumann and Mor-
genstern (1953) assumed that an analogy exists between mea-
surement in the natural sciences and one in economics. In their
words:

As to the lack of measurement of the most important factors, the
example of the theory of heat is most instructive; before the develop-
ment of the mathematical theory the possibilities of quantitative
measurements were less favorable there than they are now in eco-
nomics, (p. 3)
The historical development of the theory of heat indicates that one
must be extremely careful in making negative assertions about any
concept with the claim to finality. Even if utilities look very un-
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numerical today, the history of the experience in the theory of heat
may repeat itself, and nobody can tell with what ramifications and
variations, (p. 17)

We can now say that this assumption is incorrect, because we
cannot avoid subjective methods in measuring many variables in
economics (e.g., the "aesthetic value of a building" or the
"attractiveness of a profession"). All utility theory is based on
the possibility of quantitative measurement, but people de-
scribe real problems in natural language and not in terms of
probabilities and utilities. That is one of the main reasons the
axiomatic methods do not work.

I accordingly conclude that the optimality principle cannot
provide interesting results for problems in which people have
freedom of behavior.

In recent years psychology has invaded economics. We also
observe attempts to find neurophysiological explanations of
human behavior. The better understanding of human behavior
arising from these many fields of research will enrich economics,
which has the task of describing, explaining, and predicting
human decision-making behavior.

Why optimaSitf is not worth arguing about

Stephen E. G. Lea
Department of Psychology, University of Exeter, Washington Singer
Laboratories, Exeter EX4 4QG, England
Electronic mail: lea@exeter.ac.uk

Schoemaker argues that the optimality principle is essentially a
heuristic: It helps scientists discover valid descriptive state-
ments about the world. Its claim to acceptance therefore
depends on its productivity, not on its truth as such. Unfortu-
nately, since Schoemaker rejects both predictive power (as
"fundamentally unsatisfying") and causal process (as essentially
subjective and "ill-understood," sect. 4), he leaves us without a
reliable criterion for assessing how productive a heuristic is.
Such iconoclasm is unfortunate, because it risks diluting
Schoemaker's most important point, which is that the truth or
falsity of optimality is not worth arguing about. This is a very
important lesson for those who work at the interface between
sciences that are at present dominated by optimality laws (e.g.,
ecology and economics) and sciences that are not (e.g., psychol-
ogy and sociology).

Consider, for example, the interface between economics and
psychology. Lea et al. (1987, Chapter 5) suggested that argu-
ments about the economic rationality principle (a paradigmatic
case of optimality used as explanation) has seriously distorted
the development of economic psychology. Too often, research
takes the sterile form of psychologists investigating some eco-
nomic phenomenon, finding that behaviour is irrational, and
arguing in consequence that economists' reliance on the ra-
tionality principle is misguided.

If optimality is a heuristic, to be judged by the descriptive
generalizations it produces, a different inference follows from a
disagreement between (psychologically) observed behaviour
and (economically) predicted rational behaviour. What we
should deduce is that (i) the economic characterization of the
phenomenon is wrong or incomplete, or (ii) the psychological
characterization of the phenomenon is wrong or incomplete, or
(iii) we have not understood correctly how to aggregate from the
behaviour of individuals to the behaviour of the economy as a
whole (or, of course, any combination of these). In other words,
what we have is a disagreement between descriptive state-
ments, not a disagreement about whether or not people are
rational. Hence, if economists take the psychologists' data se-
riously they may discover deficiencies in their analysis, and in
due course replace it with another - which will also be derived
using the rationality principle. Equally, if psychologists take

economic analysis seriously, they may discover limitations in
their data, and in due course supplement them with new data
that lead to different generalizations; but the new psychological
description is unlikely to be based on optimality principles.

Some, probably most, economists reject this attempt to by-
pass the argument about rationality. Pen (1988, p. 405) puts it
neatly: "Some of us have a general theory of behaviour . . .
which is the very core of economics . . . that the world we
happen to live in is a neoclassical one." In other words, op-
timality Is a true and universal statement about economic
behaviour. Why do economists hold so firmly to this belief?
Partly, no doubt, because economics is one of the fields, as
Schoemaker argues, where there is a relatively strong prima
facie case for optimality.

That case has two bases. The most discussed is the fact that the
elements of the economy, human individuals, show rational
foresight. But the disparity between the kind of computing
power needed to maximise the objective functions of modern
economic theory and the known limitations of human thinking
means that this argument is no longer defensible. A more
plausible basis for optimality is that economic elements, particu-
larly firms, are subject to a process of selection in a competitive
market (Hirshleifer 1977). But even natural selection is likely to
produce not the best possible solution to any problem but the
worst viable solution (Lea 1984, Chapter 1), and there seems to
be no reason why competition should do any better.

The real attraction of rationality theory for economists is
surely, as Schoemaker argues, its heuristic value. It Is a univer-
sal tool. Whatever the problem, the principle of rationality can
be applied to produce at least a first hypothesis. So long as that
hypothesis is then submitted to empirical test, whether at the
economic or the psychological level, that is all to the good. Only
when generalizations about behaviours are assumed to be valid
because they have been derived from rationality does the
rationality principle become scientifically harmful. In neither
case can we say anything about the truth or fallibility of ra-
tionality itself, however. That is indeed a matter that is not
worth arguing about.

The example of psychology:
Optimism, not optimaiity

Daniel S. Levine
Department of Mathematics, University of Texas at Arlington, Arlington, TX
76019
Electronic mail: 6344dsl(wutarlg.bitnet

The question whether actual functioning can be considered
optimal according to some criterion Is of particular importance
In the behavioral sciences. Are human-made miseries such as
war, income inequality, environmental damage, and wide-
spread ignorance the result of optimal human functioning? The
"conscious striving of people and the presence of competition
and selection" (target article, sect. 7) incline some people to
believe that is so; hence, ironically, an absolute belief in op-
timality does not lead to optimistic conclusions! I believe,
rather, that 'conscious striving" is only part of the complex
interplay of factors determining human or animal decisions.
Moreover, a number of recent articles in neural network theory
bear on how this interplay may function.

The attempt to place behavior under the rubric of optimality
has infiltrated' connectionist modeling, though it has not
achieved a central place in that field. For example, Klopf (1982)
has proposed that both single neurons and brain regions "strive"
to "obtain" positive electrical polarization and to "avoid" nega-
tive polarization, and that all behavior is explained as maximiz-
ing positive polarization of a "controlling" brain area (the re-
ticular formation and midline thalamus). His more recent
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articles (e.g., Klopf 1988) have not quite followed this line,
however, but simply used learning based on such a principle as a
component in conditioning and robotic models. Kirkpatrick et
al. (1983) (referred to in the target article) developed the princi-
ple of simulated annealing, which provides one possible mathe-
matical technique for shifting from a suboptimal to an optimal
steady state in a neural system. Simulated annealing, however,
has thus far had more influence on the design of nonbiological
algorithms to solve applied optimization problems than it has on
the design of biological cognitive theories (though I can imagine
possible uses for simulated annealing in psychotherapy).

A large number of phenomena in experimental psychology
are difficult to explain under an optimality rubric; some of these
are reviewed in section 8 of Levine (1983). One example is Gray
& Smith's (1969) partial reinforcement acquisition effect
(PRAE), in which intermittent reinforcement is preferred to
continuous reinforcement, presumably because of the element
of surprise. The PRAE owes its existence to the choice of short-
term over long-term satisfaction. Another example is the self-
punitive behavior that can result if an animal first learns a
response to escape shock and then is shocked for making the
response (Solomon et al. 1953). Finally, there are the prefer-
ence reversals found by Tversky and Kahneman (1974; 1981),
discussed below.

In those neural network theories that seem to have the most
power to explain cognitive data, optimality is only one of many
influences on behavior. These models also reflect a strong
possibility that several subsystems in the brain are each max-
imizing different objective functions, but there is no global
objective function for the whole brain. This supports the state-
ment of the target article (sect. 2) that "optimality principles
may be postulated which collectively do not add up to a coherent
whole."

Most important, there are times when an organism is per-
forming some overall function optimally or close to optimally,
but its minute behavior is in other respects suboptimal. In areas
as diverse as motor control, vision, and decision making under
risk, there are network models that recognize this distinction.
For example, Bullock and Grossberg (1988) model planned arm
movements using a network in which present position is com-
pared continually with a target position, but the intermediate
trajectory points are not predetermined. The same researchers
contrast their model with a competing one (Flash & Hogan 1984)
in which the entire trajectory consists of points at which a
variable called "jerk" (the rate of change of acceleration) is
minimized. The "minimum jerk" model, Bullock and Grossberg
contend, does not allow for performing the same movement at a
variable speed or for resuming a movement after it is
interrupted.

In the visual area, Levine and Grossberg (1976) and
Grossberg and Mingolla (1985) explain various visual illusions as
byproducts of an overall system designed to compensate for
imperfections in the uptake of stimuli by the retina. Such
illusions cannot be considered "optimal behavior" in them-
selves. Even less optimal are the "cognitive illusions" discussed
by Tversky and Kahneman (1974; 1981), whereby preferences in
risky situations (involving either money or lives) can run counter
to rational utility maximization in characteristic ways. Such
preference reversals were modeled by Grossberg and Gutowski
(1987) using a neural network architecture called the gated
dipole, which had been designed earlier to account for adaptive
responses to stimulus changes.

Such nonoptimal behavior is often thought to be incompatible
with Darwinian evolutionary theory. I believe that this argu-
ment is effectively answered by Gould (1980), who states that
evolution should not be equated with progress. In reviewing
Darwin's work, Gould (p. 50) says that "organisms are inte-
grated systems and adaptive change in one part can lead to
nonadaptive modifications of other features." Also, "an orga-
nism built under the influence of selection for a specific role may

be able, as a consequence of its structure, to perform many
unselected functions as well." While traits compete for survival,
at any given moment some traits will be present that are not
optimal but not immediately lethal.

Some effects of specific brain damage or particular mental
disorders can be seen as exaggerations of suboptimal behavior
that occurs in normal organisms. For example, Levine and
Prueitt (1989) model various cognitive effects of frontal lobe
damage (perseveration in formerly rewarding choices, or exces-
sive attraction to novelty), by constructing neural networks in
which the weakening of a specific connection simulates these
effects. These networks include separate, interacting sub-
systems causing tendencies toward attentional bias in favor of
previously rewarding events (affect); toward continuation of
previously rewarding events (habit); and toward selective en-
hancement of responses to novel events (novelty preference).
Each of these subsystems by itself has obvious survival value.
The balance among these subsystems, which is disrupted in
frontally damaged individuals, is imperfect even in normals,
however. This is why novelty fetishes and perseveration are
common in individuals who are not noticeably brain damaged.

The further development of neural network models incorpo-
rating affect, habit, and novelty as well as rationality (for a
review, see Levine & Leven 1990) is likely to have an impact on
optimality theory in the social sciences, particularly economics.
Because economic actors are subject to the laws of human
behavior, economic theories can ultimately lead to more accu-
rate predictions if they include these nonrational psychological
elements. For example, Heiner (1983) argued that economic
agents, when making quick decisions on incomplete informa-
tion, sometimes act in a manner less determined by rational
choice than by their own habits. Rational choice theories are also
inadequate to explain product preference reversals mediated by
changes in motivational context. Using affect and novelty,
Leven and Levine (1987) give a neural network explanation for
one such reversal: the preference for "new Coke" over "old
Coke" in test situations, followed by the failure of "new Coke" in
actual buying situations.

In short, I believe that, although optimality is indeed "an
organizing principle of nature," it is only one of many such
principles and is far from universally valid. In psychology and
neuropsychology, there are other organizing principles that
cause actual behavior not only to deviate from the optimal, but
to deviate in some repeatable ways. Hence, the search for
explanatory theories that are elegant and quantifiable need not
lead us in directions biased by the "heuristic metastrategies of
optimality theory."

The characteristic deviations between prevalent and optimal
behavior, however, could make optimality valuable as "a nor-
mative principle for individual rationality and social organiza-
tion." The element of choice in human behavior does not
guarantee that optimal choices will be made, but suggests that
optimal choices are available. Recent theories of neuromodula-
tion in neural networks (cf. Levine & Leven 1990) hint at
possible mechanisms for rapid context-dependent switches be-
tween competing patterns of behavior. It remains for network
theorists and social scientists, in collaboration, to devise strat-
egies (environmental as well as pharmaceutical) for controlling
such switches in desired directions. Thus, relegating optimality
to a subsidiary place in social scientific theory actually leads to a
deeper optimism about our ability to transcend current
behaviors.
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Straining the word "optimal"
James E. Mazur
Psychology Department, Southern Connecticut State University, New
Haven, CT 06515

As Schoemaker has discussed, the principle of optimization has
been popular in many of the social sciences, including econom-
ics, psychology, and behavioral ecology. For example, some
economists and psychologists claim that people tend to make
choices that optimize their "subjective utility" (e.g., Becker
1976). Some behavioral ecologists state that animals tend to
make choices that optimize their energy intake per unit time,
their ability to mate, or some other variable (e.g., Krebs &
Davies 1978). On the other hand, critics of optimization theory
have argued that it is not a useful model of either human or
animal behavior. I believe that the problems with optimization
theory can be illustrated by examining self-control choice situa-
tions, which involve a choice between a small, fairly imminent
reinforcer and a larger, more delayed reinforcer.

Imagine an experiment with 60 trials a day in which a rat must
choose between one food pellet delivered after a 5-sec delay and
two food pellets delivered after a 30-sec delay. No matter what
choice the rat makes on one trial, the next trial begins 60 sec
later. One advantage of this type of experiment is that many of
the complicating factors of real-world choices are eliminated.
The two choices have identical response requirements (one
lever-press), identical total durations (60 sec), and reinforcers of
identical quality (food pellets). The only differences between
the two alternatives are the number of pellets delivered and
when they are delivered. At leaston the surface, the predictions
of optimization theory may seem unambiguous: To maximize
the number of reinforcers received (or the rate of energy intake),
the animal should choose the two-pellet option on every trial. In
choice situations like this, however, rats (and other animals) do
exactly the opposite - they choose the smaller, more immediate
reinforcer on almost every trial (e.g., Ainslie 1974; Logan 1965;
Mazur 1988).

That animals (and people) will often choose a smaller but more
immediate reinforcer has been known for some time. How do
advocates of optimization theory deal with this "impulsive"
behavior? One strategy is to retreat from the prediction of long-
term reinforcement maximization and propose that delayed
reinforcers are discounted because their delay and uncertainty
makes them less valuable (e.g., Rachlin et al. 1981). But if
optimization theory is falsifiable, it should make some specific
predictions about the nature of the temporal discounting func-
tion. A common assumption in economics (e.g., Becker &
Murphy 1988) is that temporal discounting follows an exponen-
tial function of the form VD = Vo exp (-KD), where VD is the
subjective value of a delayed reinforcer, Vo is the value of the
same reinforcer if it were delivered immediately, D is the delay
duration, and K is a constant that reflects the discount rate. The
exponential equation is a rational discounting function if the
costs of waiting for a delayed reinforcer are constant over time.
In monetary investments, for example, this equation can be
used to calculate the current value of a sum of money to be
received at some future date, taking into account the inter-
est that is lost because of the delay. It seems reasonable to
assume that, for animals, waiting for a delayed reinforcer in-
volves costs that are analogous to lost interest in monetary
investments. Therefore, if animals' choices in self-control choice
situations were consistent with an exponential discounting func-
tion, they would also be consistent with this modified version of
optimization theory.

Unfortunately for optimization theory, there is considerable
evidence that neither the choices of animals nor those of people
follow an exponential discounting rule (Ainslie 1985; Rachlin &
Green 1972). For animals, the data are instead consistent with a
hyperbolic equation of the form VD = Vo/(l + KD), with all
variables defined as before (Mazur 1.987). It is not yet known

whether this equation is also appropriate for human choices, but
it seems fairly certain that the exponential is not (Herrnstein &
Mazur 1987).

Suppose it turns out that the hyperbolic equation (or some
other one) makes the most accurate predictions for human and
nonhuman behavior when delayed reinforcers are involved. It
would then behoove advocates of optimization theory to explain
how this behavior is consistent with their theory. Perhaps
someone could make a case that hyperbolic temporal discount-
ing was indeed the optimal strategy during our collective evolu-
tionary past. Perhaps someone could relate the hyperbolic
function to memory decay and claim, using the logic of "con-
strained optimization," that this is the best we mortals can do,
given our imperfect memories.

I have no doubt that some such explanation could be devel-
oped. The explanation might even be illuminating and serve as a
catalyst for further research. It should be clear, however, that
such post hoc explanations make optimization theory unfalsifia-
ble. In addition, calling behavior "optimal" in cases like this
gives the misleading impression that people and animals make
choices that are rational and optimal in the long run. The many
examples of impulsive behavior we see around us (eating too
much, drinking too much, smoking, overspending) do not ap-
pear to be the behaviors of ideal decision-makers. I would
suggest that impulsive behavior reflects neither long-term op-
timization, nor constrained optimization, but strained optimiza-
tion, because calling this behavior "optimal" strains both the
testability and the everyday meaning of the word.
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Complexity and optimality

Douglas A. Miller and Steven W. Zucker
Computer Vision and Robotics Laboratory, McGill Research Centre for
Intelligent Machines, McGill University, Montreal, P.Q., Canada H3A 2A7
Electronic mail: doug@moe.mcrcim.mcgill.edu

The ubiquity of optimality, as reviewed by Schoemaker, raises a
curious paradox in the theory of computation: Seeking extrema
can be enormously expensive. From a computational perspec-
tive, then, we can ask: How is it possible that nature is comput-
ing all these optima?

On the one occasion when Schoemaker (indirectly) raises the
issue, in talking about "intractable combinatorial problems," he
does so only to downplay its significance, suggesting that such
problems can somehow be "optimized" by "analog models"
such as simulated annealing.

This statement leaves the reader with the mistaken impres-
sion that such intractable (NP-hard) problems really are tracta-
ble if only we write clever enough computer programs. In fact,
these problems are unsolvable, barring some stunning break-
through in mathematics or physics (Garey & Johnson 1979;
Vergis et al. 1986) for any practical purpose. Thus no practical
theory ought to depend on being able to solve them. In ignoring
NP-completeness, Schoemaker loses a major tool for deciding
whether optimization is a practical concept in a given situation,
and often even what kind of optimality is practical (e.g., global or
local). In the simulated annealing example, what Kirkpatrick et
al. have done is to substitute randomized local optimality for
global optimality, primarily because the latter problem is NP-
complete and the former is not.

To illustrate, consider a problem related to visual processing,
that of labeling line drawings of children's blocks in the well
known "Blocks world" (Kirousis & Papadimitriou 1988). The
task is to decide (label) which block faces are in front of which,
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which face intersections are concave and which are convex, and
so on, so that all pairs of labels are physically consistent. It has
been shown (Kirousis & Papadimitriou 1988) that this problem,
for certain very odd but physically possible drawings, is NP-
complete.

Computer programs have been written to solve this problem
for any instance, but because the problem is NP-complete there
are modest-sized instances that would take more time to solve
than the age of the planet. Humans are very good at accurately
labeling certain line drawings, but NP-completeness says that
there should be instances where they either go into a sort of
endless loop, or else simply fail to resolve ambiguities.

If we are posing this as an optimization problem (that of
minimizing the number of paired inconsistencies in the labels),
it seems very unlikely, based on the above analysis, that any
biological system would attempt to label this drawing in a way
that was guaranteed to be optimal. When presented with an
impossibly complex drawing, rather than entering a seemingly
endless loop, we just look at it for a while, scratch our heads, and
walk away. A more likely approach is some sort of neuronal
relaxation that favors quick identification and avoids computer
tree searches.

It turns out that an exact mathematical parallel to the labeling
problem can be made with economics and the theory of games
(Miller & Zucker 1990), for we can express the above NP-
complete labeling problems as n-person games in which each
player gets a payoff of 1 for each other player with whom his
strategy is consistent and zero otherwise. Thus there are games
for which there is an optimal global strategy in which all players
receive their maximum possible payoff, and yet such a strategy
is effectively not computable. [See also Maynard Smith: "Game
Theory and the Evolution of Behaviour" BBS 7(1)1984; and
Caporael et al.: "Selfishness Examined: Cooperation in the
Absence of Egoistic Incentives" BBS 12(4)1989.]

This implies that in general the problem of finding an efficient
cooperative solution to an n-person game (in the sense that there
is no other solution where everyone does as well and someone
does better) is effectively not computable.

So what happens when such a game is played? One kind of
solution that is effectively computable in a large class of cases
where an efficient solution is not (Miller & Zucker 1990) is the
Nash equilibrium, where each of the players settles for a dis-
tribution of strategies that maximize their own respective re-
turn, given that all the other players hold to their Nash solu-
tions. With respect to total payoffs, however, what we have is
not global optimality but merely stationarity.

Such notions of stationarity and local maxima seem much
more plausible than those of global optimality; that is, of seeking
the absolute "best." They are widely applicable to modeling the
earlier stages of the primate visual system (e.g., Zucker et al.
1989), and avoid many of the pitfalls inherent in global optimiza-
tion schemes (e.g., Blake & Zisserman 1988; see Tsotsos 1988
for a related complexity analysis). [See also Tsotsos: "Analyzing
Vision at the Complexity Level" BBS 13(3)1990.] We believe
they provide one of the intuitive building blocks for abstracting
theories of nature.

Two dynamic criteria for waiidating
claims of optimality

Geoffrey F. Miller
Psychology Department, Stanford University, Stanford, CA 94305
Electronic mail: geoffrey@psych.stanford.edu

How can we validate claims of optimality? Perhaps the central
issue in Schoemaker's target article is: how can we distinguish
real, inherent optimality from "postdietive," apparent op-

timality? Schoemaker shows an acute awareness of the human
mind's constraints and competencies; those constraints relevant
to optimality-attribution may be illuminated by the following
evolutionary-psychological argument (in the style of Cosmides
& Tooby 1987). Suppose the human mind has evolved to make
attributions of optimality to certain teleological systems and
agents encountered in its Pleistocene environment of evolution-
ary adaptedness. For example, perhaps we attributed (e.g.,
intuitively) some form of (qualitatively) optimal foraging behav-
ior to dangerous carnivores because doing so increased our
chances of survival and reproduction. (Assuming adaptive com-
petence in one's competitors and enemies is generally more
prudent than assuming incompetence.) More formally, perhaps
we evolved the ability to construct mental models of carnivores
as human-flesh-intake maximizers, and perhaps this made us
better able to position ourselves on certain safer portions of
those animals' cost-benefit curves - that is, to make it not worth
their while to try to eat us.

Although such evolved optimality-attribution mechanisms
may have been well-adapted to certain physical and social
situations in the Pleistocene, their extension into abstract scien-
tific domains would be problematic. Perhaps our optimality
attributions have been over-generalized. For example, the
causal structures of scientific domains may not be isomorphic to
those of any domains for which we have evolved effective
optimality-attribution mechanisms. Although Schoemaker does
not put the issue in quite these terms, he does show a healthy
skepticism about projecting optimality into systems where there
is none. In particular, he identifies attribution and confirmation
biases we may show with respect to our optimality heuristic.

The real issue is: How can we recognize and validate true,
inherent optimality? I am afraid that one of Schoemaker's most
central propositions will be overlooked: "Each optimality prin-
ciple . . . begs for an associated process explanation that de-
scribes causally, within the constraints of an organism or system,
how it operates" (sect. 6.4, para. 2). I would call for two specific
sorts of process explanations to distinguish real optimality from
other phenomena.

The criterion of dynamic adaptiweness. Humans may tend to
anthropomorphize, to attribute what Schoemaker calls "fore-
thought," "assent," "potency" or "consciousness" of self (sect.
4, para. 5) to systems that are not really optimizing, but merely
equilibrating. Equilibrating systems move along a trajectory in
some state-space until absorbed by some attractor (an equi-
librium point or limit cycle). Membrane physics, electrostatics,
equilibrium chemistry, annealing, and entropy maximization all
seem to involve equilibration rather than optimization. More
abstractly, the physical principles of least time and least action
could be regarded as results of relaxation in a state-space that
includes a temporal dimension. The attractors into which such
systems fall may look like the "goals" of those systems, but this
seems a rather cheap kind of goal. Although spherical soap
bubbles, for example, could be said to be optimizing volume
enclosed given surface area available, the teleological connota-
tions of optimization (which Schoemaker views as central to the
concept) seem inappropriate for such equilibrating systems.

Real optimization, by contrast, seems to be a phenomenon
associated exclusively with what Prigogine and Stengers (1984)
call "dissipative systems": systems that work to maintain them-
selves against entropic breakdown. Thus, claims of systemic
optimality should be validated by investigating whether the
system's dynamics involve equilibration (collapse to an attractor
or limit cycle) or ongoing optimization (which maintains the
system "at the edge of chaos," away from attractors - see
Langton 1990). I hesitate to invoke something like a Calvinist
work ethic for dynamical systems to distinguish whether specific
physical systems are "really" optimizing and fighting entropy,
or "merely" relaxing in state space, but, as Schoemaker recog-
nizes, the notion of optimality already includes a kind of moral,
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metaphysical, or evaluative dimension. We may as well recog-
nize that dimension and sharpen our definition of optimality so it
excludes processes whose dynamics do not conform to the
teleological expectations generated by our scientific terms.

The criterion of historical adaptation. Dissipative systems
generally result from some cumulative process of variation,
competition, and selection, so, in this view, cumulative selection
would be the central process capable of producing real optimality
in nature. Maintaining complex systems far away from equi-
librium is difficult; it requires very special design features well
adapted to the system's environment. Single randomly gener-
ated designs are generally far from optimal (i.e., they are unable
to maintain the system against en tropic gradients), and simple
selection operating on a single initial population of designs rarely
happens to find anything resembling a global optimum.

Evolutionary biologists attempt to distinguish real biological
adaptations from nonadaptations (or concomitants of adapta-
tions) by criteria not only of form and function, but of phy-
logeny. I would suggest a second, analogous criterion for identi-
fying optimality: consideration of the adaptive process that gave
rise to the system in question. Can one identify a specific
dynamic process of cumulative selection that could have pro-
duced the optimal design or strategy in question? If not, the
system may be neither dissipative nor optimal. Identifying the
adaptive process responsible for the cumulative selection of an
optimal design does not just, validate the design as more plausi-
bly optimal, but it also explains the historical origin and func-
tional nature of the design, and supports our analysis oiwhat is
being optimized. Thus, the two process questions we need to ask
are: What are the system's short-term dynamics as it approaches
"goals" (the criterion of dynamic adaptiveness), and what are
the long-term selective dynamics that gave rise to the system
(the criterion of historical adaptation)?

Applying the criteria. Optimality arguments in economics
strike biologists as weak because economic systems do not
typically show cumulative selection of economic entities that is
truly analogous to the cumulative natural selection of organisms.
Economic systems do show continual selection in the sense that
individuals or corporations can go bankrupt or succeed, but
cumulative selection would require two additional features: (1)
heritable variation in economic strategy between individuals or
corporations (i.e., offspring corporations or individuals actually
resemble their parents' economic strategies more than they do
the strategies of the population at large); and (2) economic
success literally increases the number of offspring (i.e., the
literal number of individuals or corporations produced). With-
out both of these conditions, there can be no analog of natural
selection in the economic realm. Simple continual selection
could not suffice to produce optimal economic strategists, any
more than the simple survival or death of flatworms without
inheritance or reproduction would suffice to produce whales,
sharks, or squid after a few millennia.

This is intended not merely to criticise economic theory, but
to illustrate the pitfalls of asserting optimality without identify-
ing a specific adaptive process of cumulative selection to validate
the historical origins of the optimal design or strategy. Op-
timality arguments in physics are even more problematic. Even
the anthropic cosmological principle advanced by Barrow and
Tipler (1986) seems to be a simple continual cosmological
selection principle, not a process of cumulative cosmological
selection that produces universes "well-adapted" to some un-
specified (and unspecifiable?) set of constraints. These two
dynamic criteria would also keep sociologists and an-
thropologists from advancing "functional" explanations of social-
level structures without advancing explanations of the historical
selection process that led to the generation of the "optimal"
social institution, ritual, or practice. I would contend that not
only is reference to an adaptive process of cumulative selection
required to validate any assertion of optimality but it is also

required to validate any assertion of functionality per se. (The
functionality of human artifacts presumably results from the
cumulative selection of alternative designs in the inventor's
imagination.)

Arguments about apparent optimality could and should be
used in any science where they can serve as cognitive shorthand
for more complex causal or teleological processes, and their role
as a cognitive shorthand is explicitly and carefully recognized.
But arguments about inherent substantive optimality should be
used only in those sciences that deal with adaptive systems
subject to processes of differential replication and cumulative
selection - that is, biology and its special subfields, psychology
and neuroscience. Optimality arguments in other scientific
domains can be supported only if their proponents are prepared
to identify an actual cumulative selection process - or to defend
why a cumulative selection process was unnecessary to produce
the optimal design or strategy. Reference to processes that bear
a superficial or metaphorical resemblance to natural selection is
insufficient.

The infinite regress of optimization

Philippe Mongin
Delta, Ecole Normale Superieure, 48 Boulevard Jordan, 74014 Paris,
France
Electronic mail: corsec@bucllw11 .bitnet

The critique of the optimizing account of individual decision-
making has generally emphasized either allegedly empirical
failures ("in the real world businessmen do not maximize") or
more subtle methodological difficulties of the sort usefully
discussed by Schoemaker. This commentary deals with an
altogether different class of problems that are best referred to as
logical ones. As Schoemaker also briefly indicates, there is an
infinite regress lurking behind the use of maximizing concepts
by decision theory as soon as the latter relaxes the tacit assump-
tion of zero informational and computational costs. Maximizing
a constrained objective function is indeed a costly procedure on
the agent's part. Supposing that one's search and algorithmic
costs can be assessed, these should be made part of one's choice
situation. The result is a metaoptimal decision that may or may
not upset the optimal one. Supposing that the costs of the
procedure used to reach the metaoptimal decision can in their
turn be assessed, they should be made part of the agent's choice
situation, and so on ad infinitum.

There are two ways of understanding the infinite regress just
sketched: (a) as a threat to the consistency of the agent's decision
criterion, or (b) as a threat to the consistency of the observer's
decision theory. It is not clear to what extent agents can assess
higher-order costs. A reasonable guess is that more often than
not they discover them once they have been incurred; hence
there is little sense in engaging in higher-order decision making
(except in the case of repetitive decisions). The safe interpreta-
tion of the infinite regress is in line with (b) rather than (a):
Supposing that the decision theorist knows all the relevant
costs, is there a logical level at which his recommendation is
reflectively consistent, that is, is not upset by the underlying
logic of the theory?

Now, the sort of stability property with which the optimizing
theory of decision is or is not endowed can be made precise in
two ways: (1) There is a logical level n where the (n 4- l)-optimal
decision endorses the n-optimal one; (2) there is a logical level n
where the (n + l)-optimal decision endorses the use of optimiza-
tion at the n-level. That is, the n + 1-optimizing decision may be
concerned with either n-level pointwise decisions and their
costs or n-level decision criteria and their costs. If (1) is violated,
the optimizing theorist's recommendation will oscillate in the
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action space as n-H»o°. An example of a violation of (2) is when the
theorist shifts back and forth between optimization and satisfic-
ing when n-^^ (the induced recommended action will also no
doubt oscillate in this case).

The above discussion should to some extent be familiar to
computer scientists, because they obviously have to face the
problem of optimal computations and can give a relatively
nonarbitrary meaning to the elusive concept of higher-order
costs. Strangely enough, economists have not paid due attention
to the infinite regress of the optimizing theory of decision,
despite the fact that they are the main proponents of this theory.
(The few references in the economics literature are Gottinger
1982; Mongin & Walliser 1987; Winter 1975.) This is all the
more surprising given that economists have worked out a "theo-
ry of search" (Stigler 1961) on the grounds that optimal decisions
are, indeed, costly to make.

Discarding objections that could be raised against the shaky
variant (a) of the problem, the following seemingly powerful
counterargument remains: The infinite regression critique is
irrelevant because it affects optimization and alternative theo-
ries in exactly the same way. This argument equivocates on the
meaning of the critique. It is true that, for example, Simon's
(1983) "satisficing" model gives rise to an infinite regress of its
own. For any theory T that recommends d, to know that there
were decision costs to d and that T is a theory of rational
decision-making (rather than a nonnormative one) is enough to
raise doubts as to whether d should have been recommended
after all. Hence the infinite regress itself is by no means limited
to optimization, but it may or may not converge, depending on
the particular theory at hand. The results of the economist's
"theory of search" as well as sheer common sense would suggest
that convergence in the sense of (1) is more difficult to secure
with optimizing than with nonoptimizing theories.

To be specific, Stigler's search model exhibits metaoptimal
solutions that are typically different from the optimal solutions.
This occurs because the model's monotonicity and regularity
assumptions make it worthwhile for the agent to incur a "subop-
timality cost" to lower his search cost. The simple trade-off
argument can be repeated at any higher logical level. Clearly, it
would not apply in the same way, or would not even apply at all,
in the context of satisficing. In another example discussed by
Mongin and Walliser (1987), a simple assumption connecting
the complexity of decision rules with the cost of applying them is
enough to destabilize the optimizing theory; that is, the infinite
regresses to which it gives rise in this model typically do not
converge in the sense of (1).

1 just sit there, optimise something

J. H. P. Paelinck
Erasmus University Rotterdam, Department of Theoretical Spatial
Economics, Posthus 1938 NL - Rotterdam, 3000 DR, The Netherlands

The title of this commentary, taken from an American cartoon
showing the professor of economics addressing his students, is
illustrative of some methodological excess, at least in my person-
al field of study.

Schoemaker's target article is provocative, and I would like to
comment on it starting from its last section. It is indeed correct
to distinguish three types of disciplines: the nonlife sciences, the
nonconscious life sciences, and the disciplines of consciousness.
It is probably true that at the macrolevel of nonlife enquiries,
optimality (extremising under constraints) allows one to derive a
good picture of what is going on, though an "explanation" (sect.
6) can be better obtained from the microlevel (sect. 3; Figure
1b). It can be questioned whether optimality is an "exploratory
driving force" in the nonconscious life sciences; a blind watch-

maker's view (Dawkins 1988) does seem to be a reasonable
alternative.

As to the disciplines of consciousness - in particular econom-
ics - we would like to present the following comments: Eco-
nomic theory does seem to be dominated by three ideas:
rationality ("narrowly defined as selecting means — the well-
known decision variables - that maximize a well defined end":
section 5; note that this is a "narrow definition" of the Latin
ratiol), equilibrium (generally the state of affairs resulting from
the solution of the first order optimality conditions) and, implicit
in both, optimality, as indicated. Again at the "macrolevel" (not
macroeconomics but, say, at a certain level of aggregation), the
optimality hypothesis has played a useful part, in allowing one to
derive formally specified behavioral equations (e.g., almost
ideal demand systems); these are the equations in equilibrium,
but to borrow the Prigogine (1980) terminology, economic
systems are probably operating "far from equilibrium," and a
good way of expressing this is putting down dynamic systems of
adaptive equations (maybe better adapted here than in the
nonconscious life science in section 7), as we ourselves regularly
do in spatial econometrics (Ancot & Paelinck 1983). This also
connects with the idea expressed in Paelinck & Vossen (1984,
pp. 159ff.) in which optimality is considered a learning process.
One should add that "degree of optimality" might differ from
individual to individual and from operation to operation: It is
probably advisable to be "more optimal" (sect. 2, second last
para.) when gambling at the stock exchange than when selecting
a summer holiday, which has something to do with the degree of
rigor of the constraints and the "forward looking dimension"
(sect. 7) that beset the problem. One version of "rational
expectations," moreover, allows the integration of that dimen-
sion in the adaptive process.

Finally, my view could be expressed as follows:
(1) In practice, economic agents do not "calculate with light-

ning speed their optimal consumption patterns and output
levels" (sect. 1, para. 2), but agents are probably floating all the
time at suboptimal levels between extremising and "satis-
ficing. "

(2) Extremising principles allow us to derive possible equi-
librium values, but sometimes other approaches can be used
(conflict analysis, though there, too, solutions are derived by
means of multicriteria analysis, again minimising a metric; see
van Gastel & Paelinck, in press);

(3) With respect to the last sentence of the "attribution bias"
(sect. 6), we think that our minds can probably do no better than
use optimal reasoning; other minds (from outer space) would
probably be able to do without. Let us mention a trend in this
direction, however: Bifurcation, unlike catastrophe theory,
does not use a potential to be maximised, though again bifurca-
tions might result from multiple optimal solutions (Paelinck
1990). How hard it is to get rid of optimality. . . .

as a prescriptiwe tool

Alexander H. G. Rinnooy Kan
Econometric Institute, Erasmus University, 3000 DR Rotterdam, The
Netherlands
Electronic mail: rinnooykan@hroeur5.hitnet

Schoemaker's quest for optimality provides fascinating confir-
mation of the pervasiveness of optimization as an instrument for
theory design. It is difficult to conceive of a meaningful answer
to Schoemaker's final question whether or not all manifestations
of optimality are exclusively in the eye of the beholder, but
there can be no doubt about the usefulness of optimization as a
recipe for social intervention. The discipline of operations re-
search has made this its hallmark, and it is peculiar that two
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weaknesses of optimization as a descriptive tool transform into
strengths in that prescriptive setting.

First of all, Schoemaker argues correctly that any descriptive
law of science can be mathematically rewritten as the outcome of
an optimization process. The point of departure for a prescrip-
tive theory, however, is exactly the opposite one; specification
of the optimization model necessarily precedes the possible
observation of any empirical outcome. It then turns out that
simply in forcing the decision maker to specify his intentions and
interests in an unambiguous manner, the optimization approach
frequently offers a significant contribution to the quality of the
decision process before a single computation has ever been
carried out.

Second, people undoubtedly act in a highly irrational manner
sometimes, both inside and outside the laboratory. In un-
flinchingly prescribing optimality however, a behavioural
benchmark is provided that cannot be ignored. Hence, es-
pecially in an irrational environment, the relentless rigidity of
optimization transforms a possibly flawed heuristic of science
into a forceful reminder of the standards that should guide our
problem solving and decision making behaviour.

Should the quest for optimality worry us?

Nils-Eric Sahlsn
Department of Philosophy, Lund University, Lund, Sweden
Electronic mail: nesahlin@gemini.ldc.lu.se

The questions I would like to address are: Should the quest for
optimality worry us and, if so, what is it that we should be
worried about?

In Be Motu, Berkeley argues that "mathematical
things . . . have no stable essence in nature, but depend on the
notion of the definer, whence the same thing can be differently
explained." This succinct statement comprises the essence of an
instrumentalistic view of science. An instrumentalist maintains:
(i) that scientific theories lack truth value; they are but computa-
tional tools for making predictions, (ii) that theoretical terms
such as "electron," "quark" or "utility" have no reference to
anything that exists In reality, and (iii) that the functional
dependencies expressed by the laws of a theory, for example,
"equilibria" or "optima," have (as Berkeley puts it) no stable
essence in nature (see e.g., Hacking 1983; Losee 1980; Sahlin
1990).

A scientific realist, on the other hand, rejects the arguments
in favour of one or all of these three points. One can, for
example, consistently argue that the theoretical entities postu-
lated by a theory exist, but that the functional dependencies
expressed by the laws of the theory have no such reference to
anything in nature.

For an instrumentalist, the optimality approach would be no
more than one of many available tools. With this view of science,
equilibria or optima are no more than epiphenomena of our
mathematical constructions. Schoemaker mentions a number of
Inferential biases to which the optimality approach may be
prone. Not all of these biases are problematic for someone with
an instrumentalistic view of science, however. Instrumentalists
do not have to worry about attribution biases; they would never
claim that since data have been found to fit some optimality
model, nature optimizes. Nor must they worry about illusion of
understanding, because instrumentalists know that theories are
simply tools for prediction. Instrumentalists should take se-
riously what Schoemaker calls confirmation biases and excessive
rationalizations, however. Successful applications of the op-
timality heuristic in the past can lead to a relentless use of it in
the future and an uncritical search for confirmation.

Realists, on the other hand, must worry about most of these

biases, depending on what type of realist they are, and they
must especially ask themselves whether it is reasonable to
assume that nature optimizes.

Schoemaker seems to dismiss parts of this Important dif-
ference by arguing that the "positivist view that only prediction
matters Is fundamentally unsatisfying, and optimality principles
consequently suffer from being too paramorphic." The fact that
our ontological commitments may lead to rather different In-
ferential biases, however (which shouldn't come as a surprise),
must be of vital relevance to the scientist. This is an insight that
has little to do with the view that only prediction matters.

One way to minimize the risk of unwanted inferential biases,
therefore, is to scrutinize our ontological assumptions thor-
oughly. In psychology and economics, much of the work on
human decision making is, as Schoemaker correctly points out,
formally expressed in optimization terms. Purely normative
theories of decision tell us that it is "rational" to optimize. It Is
unreasonable that so much research effort has been spent
testing these normative theories' descriptive and explanatory
validity. It is obvious that these theories do not provide us with a
sound theoretical foundation for understanding human decision
making. A sound and developed theory of belief and value Is
missing. Our theory and understanding of human decision
making will be rather different depending on whether we adopt,
for example, a mentalistic or a dispositional theory of belief, or
we argue that a belief Is a mental state (i.e., as Frank Ramsey
[1929] puts it, "a belief . . . Is a map of neighbouring space by
which we steer").

An example will show what I have In mind. It is a central idea
of the Bayesian paradigm that a decision maker's state of belief
can be represented by a unique probability measure. Thus,
experiments have been designed to test how good people are as
decision makers - a test for optimality. This seems, at least to
me, to be a far from fruitful approach. To make it successful we
must first say what a belief is. But if a belief is, for example, a
mental state, purely theoretical considerations tell us that it
cannot be represented by a unique probability measure, at least
not if we want to mirror the content of the belief accurately. No
one would argue that a reasonably detailed map can be repre-
sented by a unique function (of a frugal number of variables). An
emphasis on experimental studies, without thorough theoretical
foundations, therefore, will generate various inferential biases
and results that give us an inadequate understanding of human
cognition and decision making.

There Is another distinction that has to be considered in
discussing the quest for optimality. In most cases of interest, one
and the same phenomenon can be mathematically characterized
in a number of different ways. It may happen that some of these
descriptions make use of a concept of optimality, but not neces-
sarily all of them. A realist would argue that these are, de dicto,
equivalent descriptions - they have the same extension. They
do not have to be equivalent de re, however, that is, not all of
them need to capture the essence of the studied phenomenon.
What might seem to be a characteristic of an investigated
phenomenon, thus, may In effect simply be an epiphenomenon
of our mathematical description. Bengt Hansson (1988) has
shown that confusing de dicto with de re explanations has led to
misunderstandings in the interpretation of modern utility theo-
ry. If people act in accordance with the axioms of utility theory,
they will, from the point of view of the bystander, act as if they
had a utility function and maximized expected utility. Agents do
not need to have a utility function, however, nor do they need to
be maximizing expected utility.

What this shows is that the search for optimality does not in
Itself need to be worrisome; it is when It is based on an ill-
conceived theoretical foundation that it becomes problematic.
My thesis is that the quest for optimality Is not as serious a
problem as Schoemaker tends to make it - provided that we
thoroughly scrutinize our ontological assumptions.
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Rational agents, real people and the quest
optiinaSity

Eldar Shafir
Department of Psychology, Princeton University, Princeton, NJ 08544
Electronic mail: eldar@clarity.princeton.edu

Delving Into fields of enquiry as diverse as economics, physics,
chemistry, and biology, Schoemaker raises interesting ques-
tions about the role of optimality In scientific theorizing. Op-
timality may have different roles in different theories. As
Schoemaker points out, the appeal of optimality arguments
stems in part from our desire for simplicity and elegance in
science. But whereas certain simple and elegant theories may
be successful, or even right, others are likely to be inappropriate
and wrong. In one domain, optimality may look like an organiz-
ing principle of nature, whereas in another it may appear to be a
naive Idealization. Light travelling through water may behave as
If it is optimizing (whatever the philosophical interpretation),
whereas economic man choosing between alternatives may not.
The target article compels us to consider not just the nature of
optimality per se, but Its relevance and applicability to theoriz-
ing In several domains.

Perhaps the best known Invocation of optimality principles in
the social sciences Is the rationality assumption that underlies
microeconomic theory. According to this assumption, decision
makers behave In a manner that conforms to some very simple
principles of rational choice such as the principle of dominance:
If one option is better than another in one state of the world, and
at least as good In all other states, then that option should be
chosen. Another principle is that of invariance: Different repre-
sentations of the same choice problem, or different methods of
eliciting a choice, should yield the same preferences (Tversky &
Kahneman 1986). What is the status of these and other rational-
choice principles? Do they constitute the core of human eco-
nomic behavior? Are they, rather, part of an unrealistic view of
human nature? The answer to these questions depends largely
on whom we take the decision makers to be. If we are thinking of
von Neumann & Morgenstern's (1947) hypothetical rational
agents, who populate the world of many economists, game
theorists, mathematicians, and statisticians, then these op-
timality desiderata are organizing principles or, better yet,
defining characteristics. On the other hand, if what we have in
mind are real people, like us and our friends, then these same
optimality principles are nothing more than inapplicable as-
sumptions, wishful Ideals.

Schoemaker suggests that "optimality in science is a powerful
heuristic for describing existing phenomena as well as predict-
ing new ones." To be a successful heuristic, however, optimality
should make predictions In the same domain that it describes.
Instead, one frequently encounters economic predictions re-
garding real people, based on descriptions that apply only to
rational agents. It is when we predict one population based on
the description of another, very different, population that the
nature of the optimality heuristic becomes particularly enig-
matic.

Although normative theories are characterized by elegant and
mathematically sophisticated optimality principles, a rich body
of work shows that these theories are not reconcilable with the
way real people behave (for reviews, see Hogarth & Reder 1986;
Slovic et al. 1989; Tversky & Kahneman 1986). As a conse-
quence of this tension, several theories that retain some of the
more normatively appealing principles while relaxing others
have been developed in recent years (for reviews, see Camerer
1990; Machina 1982; Schoemaker 1982). According to these
theories, decision makers violate certain principles (e.g., inde-
pendence and transitivity) but not others (e.g., invariance). But
who are these theories about? They are not about rational
agents, because they behave In conformity with all the prin-
ciples and have no good reason to give up any. They are also not

about real people, because we regularly violate all the prin-
ciples, including some of the normatively indispensable ones
such as dominance and invariance. There is, it appears, an
Interrelationship between our criteria of optimality, and what
these optimality criteria refer to in a given domain.

The question of whom (or what) science's optimality prin-
ciples refer to seems pivotal in contemplating what these op-
timality principles mean. In the theory of individual decision
making, this question may lead to remarkably diverse answers.
The economic rationality assumption may be considered with
reference to at least three distinct groups: rational agents who
satisfy all the underlying principles of the rationality assump-
tion; people like us, who perhaps believe in these principles but
do not behave as If we do; and other, recently evolved creatures
who satisfy some principles and violate others. Optimality
(defined in terms of the rational principles of choice) is a law of
nature for the first group, an impossible dream for the second,
and a compromising raison d'etre for the third. In reflecting on
what optimality is, we need to consider whom it is about. The
answer to the question, "What Is optimality?" will depend, at
least to some degree, on who we think is optimizing.

Extremum descriptions, process Saws
and minimality heuristics

Elliott Sober
Philosophy Department, University of Wisconsin, Madison, WI 53706
Electronic mail: esober@wiscmacc.bitnet; esober@vms.macc.wis.edu

The examples and concepts that Schoemaker cites are rather
heterogeneous. Some distinctions need to be drawn. Consider
first the example of Fermat's law. It states a minimum principle.
The law does not say whether it is good or bad for light to follow
the path of least time; it just says that light does this. An
optimality thesis involves not just an ordering of options, but a
value judgment about them. So let us begin by distinguishing
minimality from optimality.

The concept of minimality can play a variety of roles. First,
there are statements to the effect that the value of some param-
eter is as low (or as high) as it can get in systems of a particular
kind. I will call such hypotheses extremum state descriptions.
Second, there are statements to the effect that a given kind of
system engages in a process of minimizing (or maximizing) some
quantity. These diachronic claims hypothesize an optimizing
process. Third, there are methodological recommendations to
the effect that one should prefer one hypothesis over another on
the ground that the first is favored by some optimality (or
minimality) criterion.

Fermat's law says that the path of a light ray moving from one
medium to another has a given minimum property; it does not
say that light engages in an optimizing process in which light
manages to successively reduce its travel time. Still less does
Fermat's law state a methodological recommendation, either
about how to theorize about the physics of light or about any
other subject. So Fermat's law falls into the first of the above
three categories, but not Into the other two.

Process laws sometimes postulate a monotonic increase (or
nondecrease) In some quantity. Entropy goes up in closed
systems, according to the strict second law of thermodynamics.
Fitness increases in systems that obey Fisher's fundamental
theorem of natural selection. Neither of these laws requires that
any real system actually exhibit the maximal degree of the
quantity Involved; each simply says that systems are on their
way toward that maximum, whether or not it will ever be
attained.

The idea of optimality (or minimality) as a "positive heuristic"
in science, which Is Schoemaker's main subject, concerns the
justification for accepting or preferring hypotheses. Heuristics
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are methods, not the items obtained through the use of those
methods. The content of a statement must not be confused with
the methods by which the statement is accepted or favored.

This point is important, for there is no necessary connection
between extremum state descriptions or optimizing process
laws on the one hand and, on the other hand, the heuristic
principles that may tell us to favor such descriptions or laws.
Fisher's theorem (understood appropriately as a conditional
statement) is a theorem; it is a deductive consequence of the
appropriate starting assumptions. One does not have to accept
an optimality heuristic to believe this law; it suffices to follow the
mathematical argument. So Fisher's theorem belongs to the
second category mentioned above, but not to the first or third.

Just as an extremum state description or an optimizing pro-
cess law can sometimes be justified without resort to an "op-
timality heuristic," so an optimality (or minimality) heuristic can
justify a hypothesis that does not itself assert either an ex-
tremum state description or an optimizing process law. For
example, the method of cladistic parsimony used to reconstruct
phylogenetic relationships favors the genealogical hypothesis
that requires the fewest changes in character state; but this
favored hypothesis does not assert that the number of changes is
no higher than this minimum. One must not confuse minimizing
assumptions with assuming minimality (Farris 1983; Sober
1988).

Schoemaker asks, "Who is optimizing: the scientist or
nature?" The above threefold taxonomy can be used to clarify
this question. Extremum state descriptions and laws that postu-
late an optimizing process make claims about nature. When
they are well justified, we may conclude that various natural
systems occupy extremum states or engage in a process of
monotonic increase (or decrease). What is less straightforward is
the third category: When a methodological principle tells us to
favor hypotheses in accordance with some optimality criterion,
what, if anything, does the use of this criterion presuppose
about nature?

Here we must be careful to consider various methodological
recommendations one at a time. In standard regression analysis,
the best regression line is the one that minimizes the residual
variance. This methodology can hardly be said to assume that
variance is minimal in the world at large. Regardless of how
much variance there is in a given inference problem (and even if
the idea of "the amount of variance in nature at large" is not well-
defined), there is a well-understood rationale for why one
regression line is to be favored over another (Farris 1983; Sober
1988).

Other methodological recommendations are less well under-
stood. Philosophers have puzzled for a long time over the
credentials of Occam's razor. Why should we use parsimony or
simplicity as a criterion? These minimum principles apparently
are used to guide us in what we believe or think plausible. So the
mere fact that simpler hypotheses are easier to understand and
manipulate, or more beautiful to behold, does not seem enough.
The perennial problem has been why we should regard sim-
plicity and parsimony as signs of truth.

Newton laid down as his first rule of reasoning in philosophy
that "Nature does nothing in vain . . . for Nature is pleased
with simplicity and affects not the pomp of superfluous causes."
Leibniz hypothesized that the actual world obeys simple laws
because God's taste for simplicity influenced his decision about
which world to actualize.

Epistemology since Hume and Kant has drawn back from this
way of understanding methodology. The view has taken hold
that a preference for simple and parsimonious hypotheses is
purely methodological; it is constitutive of the attitude we call
"scientific" and makes no substantive assumption about the way
the world is.

A variety of otherwise diverse philosophers of science have
attempted, in different ways, to flesh out this position. Two
examples must suffice here; see Hesse (1969) for summaries of

other proposals. Popper (1959) held that scientists should prefer
highly falsifiable (improbable) theories; he tried to show that
simpler theories are more falsifiable. Quine (1966), in contrast,
saw a virtue in theories that are highly probable; he argued for a
general connection between simplicity and high probability.

Note that both these proposals are global. They attempt to
explain why simplicity should be part of the scientific method in
a way that spans all scientific subject matters. No assumption
about the details of any particular scientific problem serves as a
premise in Popper's or Quine's arguments. In this respect, their
positions are continuous with the tradition stemming from
Newton and Leibniz.

In view of the various inadequacies that attach to these global
proposals, it is perhaps time to take a more local approach. Let
me suggest here a strategy for understanding how simplicity and
parsimony criteria function in science, one that I have at-
tempted to implement elsewhere (Sober 1988; forthcoming).
When the choice of a hypothesis is justified by appeal to
parsimony or simplicity, this must be because some substantive
assumption about the world is in play; in practice, Occam's razor
is not "purely methodological." But different appeals to sim-
plicity and parsimony make different assumptions in the settings
of different inference problems. There is no global principle of
parsimony whose justification is subject matter independent.

At the end of his article, Schoemaker lists a set of choices. Is
optimality "(1) an organizing principle of nature, (2) a set of
philosophically unrelated techniques of science, (3) a normative
principle for individual rationality and social organization, or (4)
a metaphysical way of looking at the world?" I would suggest
that the phenomena Schoemaker considers are so hetero-
geneous that the answer must be: all of the above. Doubtless the
concept sometimes plays each of these roles. If this is right, then
the way to improve our understanding of optimality concepts in
science is to look at concrete examples in some detail, without
assuming in advance that there is a single analysis that must
work across all the cases.

Awoid the push-pull dilemma in explanation

Kenneth M. Steele
Department of Psychology, Mars Hill College, Mars Hill, NC 28754
Electronic mall: kms@ecsvax.bitnet; kms(d>ecsvax.uncecs.edu

Schoemaker asks about the types of acceptable scientific expla-
nations of "why x occurred." His answer is that there are two
types, causal and teleological. In this commentary, I want to
make the following points. First, Schoemaker's distinction be-
tween causal and teleological explanations is tenuous. It has
already been violated in past psychological theory. Second, his
distinction misses an important difference. Optimality analyses
are often associated with another type of scientific explanation,
one that eschews concern over the mechanical order of events.
Such analyses are not concerned whether a previous event is
pushing or a future event is pulling. Finally, optimality analysis
is a tool: Like all tools, it can be used correctly or it can be
abused.

What is wrong with Schoemaker's distinction? Consider the
following case from psychology: A rat, deprived of food for a
suitable amount of time, is placed in a straight alleyway that
contains a morsel of food at the other end. The rat, after several
such experiences, behaves quite differently from the way it did
on its first trip. When it runs, it runs quickly and with the
appearance of "going somewhere." What is a good explanation
for this rat's new performance? Schoemaker suggests that there
are two types of explanations, causal and teleological, which are
fundamentally different. The causal one consists of a chain of
antecedent "pushes" and effects. In this case, the pushes would
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probably be described physiologically. The ideological explana-
tion focuses on a goal, and an intention to obtain it. The "pull"
from the food-morsel on the rat might be expressed using a
cognitive phrase like "food expectancy."

Schoemaker's alternatives makes the analysis by Clark Hull
(1930; 1931) of Interest here. Hull assumed that the world in the
alleyway, for the moving rat, was a sequential flux of conditions
(stimuli) and reactions. The changing outer world produced a
parallel series of changes in the rat, that is, representation. The
rat was "pushed" into action by kinesthetic stimulus aspects of
the "hunger drive," which constituted a persistent core of
internal stimulation (as opposed to the flux of the outer world).
With repeated experiences of finding the morsel at the end,
such drive stimuli called forth fractional anticipatory goal re-
sponses (e.g., the licking of one's lips). These fractional antic-
ipatory goal responses also had kinesthetic stimulus qualities
that served to elicit responses. Because the hunger drive was a
persistent cause throughout the sequence, the control by antic-
ipatory goal responses was also persistent throughout. In other
words, the fractional anticipatory goal response corresponded
quite literally to the "idea" of obtaining food; and an idea or goal
was a causal event!

There are two points in Hull's analysis that are relevant to
Schoemaker's distinction. The first is that pull and push are
inextricably intertwined in Hull's moment-by-moment analysis
of the rat's behavior. This Is no happenstance. At that point in
the history of psychology a similar choice was offered between
push versus pull explanations. Hull's model swallowed both and
shows that Schoemaker's distinction is not a dilemma. Second,
with regard to Schoemaker's emphasis on the metaphysical
nature of teleological explanations, the nature of stimulus as-
pects of a drive-construct and the nature of stimulus aspects of
an anticipatory-goal-reaction-construct seem equally impal-
pable.

The further developments In Hull's theory exemplified his
vision of an adequate scientific explanation. Hull's later explana-
tions (1943; 1952) of the rat in the alleyway became more
complex, not less, with the introduction of such additional
constructs as stimulus intensity dynamism, incentive moti-
vation, reactive inhibition, reaction threshold, and reaction
potential oscillation. But all contributed to Hull's vision of an
adequate scientific explanation, which was to give a complete
moment-by-moment explanation of the rat's behavior.

And that Is where optimality analyses are different. The
difference can be seen in Schoemaker's "trivial example," which
begins with the assumption of the empirical law: y =f(x). Russell
(1959) pointed out the advantages of such means of expression.
Consider Ohm's law (E = IB). There is nothing easily dis-
tinguished as the cause or the effect in the expression relating
voltage to current and resistance. It is just as meaningful to make
any of the three variables the effect or goal. One could specify
that a particular voltage level must be held In the circuit, or that
current load was to be minimized, or both.

An optimality analysis Is based on an objective function,
which mathematically specifies the relationship between some
number of variables in terms of such a common dimension or
currency as utility or reproductive fitness. It is a tool by which a
scientist may specify mathematically assumptions or conclu-
sions concerning a relationship; the formulation can then be
evaluated. That the goal is expressed as the maximization or
minimization of some variable is more properly understood to
mean that there Is a systematic preference for or against the goal
variable. The extremum aspect of the formulation is akin to that
of the operational definition, specifying exactly what Is Included
or excluded.

Optimality analyses are often balance or regulation models.
They are attempts to express relationships In a fashion similar to
Ohm's law. One positive feature of such models is that they do
not immediately demand specification of moment-to-moment
causal sequences. There is no concern about filling every mo-

ment of time with explanatory entities. They allow us to avoid
sterile push versus pull or cause versus effect arguments. Such a
difference in the use of models can be seen in comparing the
theories of Staddon (1983) and Hull (1943), who have both
combined biology and mathematics in psychology. Forty years
have made a difference. It is certainly true that the technique
may be misused, and one type of misuse is overuse (Gould &
Lewontin 1979). But the point is, this is true of all scientific tools
and can't be used to decide the worth of an analysis.

Optima! confusion

Stephanie Stolarz-Fantino and Edmund Fantino
Psychology Department, University of California, San Diego, La Jolla, CA
92093
Electronic mail: p528@sdcc12.ucsd.edu

The author of this illuminating and thought-provoking target
article invites us to decide what optimality "really is," offering
four possibilities, as well as "something else still." Although we
favor "all of the above," as behavioral scientists we are most
interested in the third meaning of the "optimality heuristic": "a
normative principle for individual rationality and social organi-
zation." Research in one of our laboratories has used optimal
foraging theory to provide useful predictions of choice behavior
that have been confirmed empirically (e.g., Fantino & Abarca
1985; Fantino & Preston 1988a; 1988b). As pointed out in this
journal, delay-reduction theory (DRT), developed over the past
21 years in the operant laboratory, generally makes the same
predictions as - and can be shown to be equivalent to - the
optimal diet model of classic optimal foraging theory (Fantino &
Abarca 1985). These theories, however, do not always require
behavior that maximizes reward over anything but brief tem-
poral intervals. And when the predictions of these more mo-
lecular models, such as DRT, are pitted against a more molar
optimality approach, ongoing work in our laboratory (with
Wendy A. Williams) shows that choice follows the predictions of
DRT and not optimality. Generally, however, behavior obeying
the DRT is also optimal at a more molar level, and one is
reminded of Simon's theory of bounded rationality, according to
which, as Schoemaker notes, "people satisfice rather than op-
timize." But whereas it Is no simple matter to show that hungry
pigeons deviate from maximizing food intake (consistent with a
more molecular, "satisficing" rule), it is apparently easy to show
that the inferential reasoning of human subjects may be dramat-
ically flawed. We offer an example and then attempt to reconcile
it with a "satisficing" viewpoint.

The "conjunction effect," reported by Tversky and Kahne-
man (1983), Is an example of base-rate error in human reasoning
in which subjects report the conjunction of two events to be
more likely to occur than either of the events alone. This effect is
quite robust - in fact, our own attempts to eliminate it by
modifying our instructions to make the underlying logic of the
task more obvious resulted in an even larger effect than before.
Since behavior is, we believe, largely a function of past experi-
ence, it must be the case that experience does not always push
organisms toward greater rationality - at least in the short term.

As discussed by Nisbett and Ross (1980), most of people's
Inferential errors have no serious consequence in daily life, and
may even be inadvertently reinforced. Organisms that are
primarily sensitive to short-term (molecular) events, in most
cases do adequately in the long-term (i.e., In the molar sense) as
well. But optimal or not, behavior cannot be described, ex-
plained, or predicted fully without taking into account events on
a molecular level.
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The human being as a bumbling optimalist:
A psychologist's wiewpoint

Masanao Toda
Department of Cognitive Science, Chukyo University, Toyota-shi, 470-03,
Japan
Electronic mail: toda@sccs.chukyo-u.ac.jp

I agree basically with Schoemaker that "to a large extent,
optimality is in the eye of the beholder," with one exception:
The beholder, a human being, is in my opinion a true optimizer
in his intentions. Being a psychologist, I will concentrate in this
commentary on elaborating this particular viewpoint.

Let me choose physicists as my first target. It certainly goes
without saying that major features of the models of the physical
universe that they have built are not those of the optimizing
type, despite the existence of a few of such interesting optimiz-
ing physical laws as Fermat's principle. (Many of the simple
extremum laws of physics are of the trivial kind, however.) What
interests me most about physicists is the sharp contrast between
this lack of optimality principles in their models and their
extremely "optimalistic" attitude. As cited by Schoemaker,
physicists seem to be vigorously pursuing their shared aesthetic
goal of obtaining the ultimate model of the physical universe,
one that is simple, elegant, and symmetric, as well as valid. So
physicists are undoubtedly optimizers in their intentions. Note
at this point that this contrast confirms the obvious: Having
optimalistic intentions has nothing to do with whether or not the
models scientists create are also optimalistic.

A more interesting issue here is the relationship between
physicists' intentions and their behavior. As intentional op-
timizers, do physicists try to maximize the aesthetic value of
their models by directly manipulating aesthetic dimensions?
Occasionally, such as when they try to replace clumsy-looking
equations with equivalent but more elegant ones, or when they
strive to discover magnetic monopoles to eliminate nonsymme-
try between electricity and magnetism. They are not directly
optimizing their models in doing so, however, because there is
no need. For most physicists the optimal model of the universe
already exists, it is merely hidden. So what they are supposed to
do is find it; to that end, manipulating aesthetic dimensions
might help as a heuristic strategy, because the missing model is
already known to be beautiful beyond comparison.

Now let me turn to such other disciplines as psychology and
the social sciences; they should reveal another aspect of the
relationship between scientists' intentions and their behavior. If
all people, physicists or otherwise, are intentional optimizers as
I contend, then why do psychologists not endorse more strongly
optimizing models of human behavior? The reason seems to rest
less on the complications of trade-off relations among each
person's, say, wealth-optimizing, happiness-optimizing, and
similar intentions; it has more to do with people being bumbling
optimizers in their behavior, even if their intention to optimize
remains stable.

An individual person lives in an opaque world, consisting of
very many unknown variables, apparently too many for a person
to be capable of handling in any straightforward optimal way.
Within that opaqueness, or limited visibility, one can do little
more to optimize than to choose a better-looking alternative
among those presented on each occasion. This type of behavior
apparently offers little chance for an optimizing behavior model
to succeed, because a person may easily be trapped on top of a
local hill (its altitude measured in terms of a personal value
scale), or, while trying to climb a steep value-cliff, he may slip
and fall into a river and be carried farther downstream. If
individuals should behave this way, the preoccupation of psy-
chologists with causal models of behavior would appear natural.
The controversial point concerns whether or not psychologists
need optimizing behavioral models in addition to causal ones.

To consider this point we should first clarify a little what

causal models are really for. To make what should be a very long
argument short, let me tentatively characterize causal models,
either those of a scientist or those of a layperson, as the conse-
quence of an attempt to describe the behavior of some target
agent (animate or inanimate) in terms of a set of carefully chosen
antecedent conditions. Though there are apparently infinite
degrees of freedom for what set of antecedent conditions to
choose as the cause of some effect, some choices are practically
not considered; for example, to choose as the cause for a glass
being broken the event that occurred just a moment before,
namely, that the glass was about to hit the floor with a certain
velocity, would obviously be useless. So a certain time lag
between cause and effect is important: but there are also other
elements determining preferences for hypothetical causes (their
truth values are not my concern here). The characteristics of the
preferences may be summarized as follows: Knowing about the
actual occurrence (or nonoccurrence) of one of the causes must
confer the power to increase one's chance for optimization, for
example, through enabling one to flee from a disaster (an effect)
before it happens, or through preventing the disaster itself by
controlling its cause in advance. So, after all, even causal models
are human inventions caused by people's intention to optimize.
Both causal and optimizing models are therefore needed to
establish a satisfactory science of human beings, even though
the interrelationships between these two types of models could
be quite complicated.

Now let me briefly consider the social sciences, where the
target universe is a world full of bumbling optimizers, yet it is
still doubtful that society at large has even a semblance of the
intention to optimize. Note, however, that these sciences have
again been created from human beings' desire to expedite their
optimization. People are apparently not satisfied with just hav-
ing causal guidebooks for coping with local issues, but also aspire
to have a sort of global map, however crude, to aid them in
making longer-range plans or such collective decisions as policy
making. In any case, the real issue for social scientists is how to
handle the enormous number of variables they are beset with.
There seem to exist two major ways for cutting this Gordian
knot: The first is to make simplifying assumptions, as usual.
Assume that everyone is an optimizer even in behavior and not
just in intentions, endowed with exactly the same dispositions
and preferences. Such an assumption might produce some
approximate model of human collective behavior for the reasons
cited by Schoemaker. The second alternative suggests the use of
control theoretic models that superficially resemble true op-
timization models. Once a certain state of society is declared
desirable, one need pay attention only to the deviation of the
actual state from the desired one, and the efforts of policy
makers can be concentrated on reducing it. This should in turn
be relatively easy because, if the deviation is small, many of the
troublesome variables can be rightfully ignored as making only
insignificant contributions to the deviations.

Now, let me come to my final remark. Obviously, human
beings as intentional optimizers are an outcome of evolution.
Causally speaking, Nature does nothing but eliminate relative
misfits who have failed to discover a safe haven. Could there be
any effective means of traversing this seemingly great distance
between a relatively mild causal rule and the creation of some-
thing as freakish as an intentional optimizer? As the space for
this commentary runs out, I happily leave this tantalizing
question open.
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is economics still immersed in the old
concepts of the Enlightenment era?

Andrzej P. Wierzbicki
Institute of Automatic Control, Warsaw University of Technology,
Nowowiejska 15/19, 00-665 Warsaw, Poland

Through most of my professional life I have been working on
optimization theory, its techniques and their applications in
various fields. Schoemaker's target article has convinced me
that 1 should goad economists - at the risk of offending some
friends - into accepting a less traditional view of the world, for
economists wield optimization like a samurai his sword: The
sword is beautiful and they use it ceremonially and ritu-
alistically, but not sparingly or purposefully. This may be beau-
tiful to watch, but have you ever heard of a Japanese team
winning the Olympics in fencing?

Schoemaker might have had similar purposes, but I cannot
agree with any of his four suggestions about the meaning of
optimality. It is the fifth possibility - something quite different.

What is optimality and optimization? Optimality is just a basic
concept in optimization theory, which is in turn a part of
mathematics. And mathematics is a language - a tool for stating
our thoughts more precisely and in shorthand notation, with
powerful means for checking the internal consistency of such
statements. Mathematicians spend their lives developing and
polishing this tool, guided by a specific instinct and taste. They
know that the number of theorems that can be proven is infinite
and the real question is which to prove next, not how many to
prove (in contrast to some economic theorists).

There are parts of mathematics that have integrative char-
acter; in a short statement they say more than is apparent at first
glance. Optimization theory belongs to them, but other parts
might be even more integrative. For example, the concept of
separating two sets by a (level set of a) function is also used in
optimization theory; this is a highly integrative concept. To say
that a function separates, at a given point of a set, this set and a
cone shifted to this point, is equivalent to three more detailed
statements: that this point is efficient (pareto-optimal) with
respect to the ordering induced by the cone; that this point
maximizes the function on this set; and that this function is (at
least locally) monotone with respect to the ordering. Thus,
arguments based on separation of sets simplify proofs and give
new insights. Mathematics is full of such integrative statements.
Optimality can also be used to state other mathematical con-
cepts. For example, the concept of a subdifferential extends the
classical calculus of derivatives; this concept was developed as
part of optimization theory, however, and is often stated in its
terms. The concept of a projection, of approximation and many
others involve optimality.

Being integrative, optimization theory is a very good tool for
applied research: Its application in a field of science can give
unexpected insights. Such insights must be checked for ap-
plicability, but they often prove to be good enough (in a given
context and scope). Schoemaker and many economists choose to
call this fact the teleological nature of optimality; I would give a
different explanation: It indicates instead that the instinct and
taste of mathematicians developing optimization theory were
correct; optimization provides a truly useful tool for applications
- particularly in fields where conservation principles or ac-
counting identities (which can usually be restated in terms of
optimality) are important, as in physics or economics. Such
fields use optimization extensively, but not necessarily in the
most sophisticated way; for example, applications of non-
differentiable optimization started first in other sciences.

We could, however, choose to restate optimality principles
(as indicated above) in terms of the separation of sets in an
applied field. What would the teleological nature of such a
statement be then? That light "travels in order to separate two
sets"? And if we used other integrative parts of mathematical

language that might provide other insights? Teleology is in the
eye of the beholder.

The role of changing basic concepts about our perception of
reality. Many researchers, reflecting on the current state and the
future of human civilization, conclude that the basic concepts of
perceiving time and space, cause/effect, and reality in general
have changed considerably during the twentieth century and
that this change has played an important role in the transforma-
tion of current industrial civilization into a new (postindustrial?
information? informed, humanistic, and global?) stage. Some
argue that the old concepts reflect a mechanistic perception of
reality developed during the Enlightenment era and adopted by
industrial civilization.

The industrial civilization concentrated on material resources
that are limited - which results, loosely speaking, in a constant-
sum economic game. Information resources, when shared,
usually increase - and the sum of the game is not constant.
Modern biology has largely abandoned the Darwinian (I agree
with Schoemaker's Note 6 that it is actually Spencerian) mecha-
nistic concept of the strictly competitive evolution of the "sur-
vival of the fittest" and included many other evolutionary
principles. On the intersection of biology and decision sciences,
new concepts of evolution of cooperation are investigated (I
wonder why Schoemaker did not cite the results of Axelrod
(1984) and Rapoport et al. (1976) and how he would classify
them). In economics, the focus is usually on the "survival of the
fittest" - even if more advanced evolutionary concepts are
investigated by a few more radical thinkers (Simon, cited only
for his earlier works (1957; 1981), or Nelson and Winter (1982),
neither quoted). For the "economic man" should be mecha-
nistic: selfish, consistent, and of unchanging taste; how should
we then characterize an "informational man"? [Cf. Caporael et
al.: "Selfishness Examined: Cooperation in the Absence of
Egoistic Incentives" BBS 12(4)1989.]

I agree with Schoemaker that optimization, as it is used in
most parts of economic theory, leads to a counterposition of
mechanical causality and teleology. Meanwhile, however, me-
chanical causality has been rendered obsolete by several con-
cepts of such modern systems theory as dynamic processes with
feedbacks, self-organization and synergy in complex systems,
chaotic processes, as well as the more relativistic distinction
between a law of nature and a model. The concept of feedback,
for example, was developed more than 50 years ago in telecom-
munication and automatic control as a strictly causal (though
more complicated) mechanism. It spread to other fields, how-
ever, and made obsolete the mechanical causality in the analysis
of more complex systems - to such an extent that I have heard
long discussions about whether the concept of feedback is causal
or teleological. In economics, even if dynamic processes are
investigated and the concept of feedback is used, the mathe-
matical content of a typical academic curriculum is focused on
static calculus and optimization, sometimes extending to a few
dynamic aspects of the latter, not dynamic disequilibrium pro-
cesses with feedback. Thus, most of the economic profession is
not equipped to investigate dynamic evolutionary processes.

Relativistic physics has prompted other sciences to adopt a
more relativistic attitude (in the popular, not the physical sense
of this word) toward their own results, which - even if stated in
mathematical language - can consistently be described only as
models of reality, not laws of nature. In a model, however,
teleology is always "as if," often a kind of anthropomorphism -
although a good model should help in understanding (which is
more than explaining) the reality. Models of the "black box"
type can be useful only in a very ad hoc sense - hence,
Friedman's (1953) arguments are indeed weak. Moreover, util-
ity maximization heuristics are often taught to students as a basic
law of the economic world - whereas they obviously only
comprise a model of rather limited applicability.

I use the term "utility maximization heuristics" here, not
"rationality heuristics" as Schoemaker does, because it has been
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argued elsewhere (e.g., Sopron 1984) that utility maximization
is only one of many possible frameworks for perceiving ra-
tionality. For example, some Japanese economists argue that
utility maximization heuristics were developed in American
economics because they reflect the individualist culture that
was historically useful for conquering a large, almost empty
continent, whereas the more collectivist culture of Japan would
require harmony maximization heuristics — and harmony is not
another type of utility, because it describes a group, not an
individual. The best evidence that other cultures might per-
ceive rationality differently is the fact that the long list of
references in Schoemaker's target article contains almost ex-
clusively American and British sources. I could add many others
reflecting different viewpoints, but even listing those references
to which I owe much of the thoughts presented above would
exceed the limits of this commentary.

I should add, however, that the question in the title of this
commentary is emphatically not restricted to American eco-
nomics; it certainly applies even more (and has been posed),
slightly differently, by Jozef Pajestka) to economics in my own
country.

Author's Response

The strategy of optimally revisited

Paul J. H. Schoemaker
Center for Decision Research, Graduate School of Business, University of
Chicago, Chicago, IL 60637
Electronic mail: fac_paul@gsbacd.uchicago.edu

Not surprisingly, my wide ranging target article on op-
timality elicited a broad spectrum of reactions. Of the 27
commentaries, 15 came from psychology, 4 from biology,
3 from philosophy, 4 from mathematics/operations re-
search, and 1 from economics (as judged by departmental
affiliation). No strong correlation emerged between disci-
pline and attitude toward the optimality heuristic, al-
though psychologists and philosophers were most skep-
tical about its value. In addition, little consensus could be
found about the usefulness, role, and epistemological
basis of optimality principles. Nonetheless, interesting
extensions (e.g., Crow's), challenges, and issues were
introduced. Foremost, in my view, is the need for better
criteria to judge the utility and validity of optimality
models. Second, the usefulness of comparing and gener-
alizing across disciplines surfaced as an interesting issue
(especially for this journal). I shall start by examining
these two questions in reverse order and then I will turn
to other important issues.

1- Overall concerns

General liability. Several commentators questioned the
value or even the legitimacy of examining optimality
principles across sciences. For example, Sober begins his
commentary with, "The examples and concepts that
Schoemaker cites are rather heterogeneous," and con-
cludes with, "The way to improve our understanding of
optimality concepts in science is to look at concrete

examples in some detail, without assuming in advance
that there is a single analysis that must work across all the
cases." Others (Cabaeac, Larichev, Paellndk, and Tocla)
prefer separate treatments of optimality across the phys-
ical, biological, and social sciences. In contrast, Bookstein
considers all optimality principles "at best tautologies,"
whereas Anderson welcomes more extensive cross-fertil-
ization between economics and psychology, especially in
the domain of human memory (which he believes to
exhibit optimal design). Miller & Zucker generally ad-
dress the paradox that the ubiquity of optimality models
runs counter to their inefficiency from a computational
perspective (i.e., it can be very expensive to find and
compute optimal solutions). And Moegie addresses the
general philosophical concern that what is optimal at one
level need not be optimal at a higher metalevel (resulting
in an infinite regress problem).

At the level of form, methodology, and philosophy it
seems useful to examine optimality principles across
disciplines. Apart from potential cross-fertilization and
standardization (in terminology and technique), the gen-
eral perspective acknowledges that scientific meth-
odology transcends the specifics of disciplines. In addi-
tion, it presents an opportunity to examine how the
sciences interrelate and connect in the hierarchy of obser-
vations. For example, if the laws of physics do obey some
deep optimality principle, then presumably animals and
humans should also exhibit this fact (within a strict mate-
rialist view). The converse, however, need not hold:
Perfect efficiency of economic markets does not imply
perfect rationality for all players (because only a subset of
traders determines the equilibrium price). Thus, from a
materialist point of view, we might expect a gradient of
optimality across sciences, running from the most funda-
mental (physics and chemistry) to higher levels (e.g., the
social sciences). This gradient may in turn be countered
or strengthened by additional variables or conditions that
arise at higher levels (e.g., natural selection, complexity,
consciousness, and perhaps free will). In terms of sub-
stance, however, it seems useful to examine optimality
principles by discipline or specialty. For example, Fer-
mat's principle of least time is quite different in its
referents, process, and assumptions from, say, optimal
foraging theories in ecology or capital market efficiency in
economics.

Validation criteria. Several commentators address the
issue of how to judge or evaluate optimality models. Lea
especially deems it unfortunate that I "reject both predic-
tive power and causal process" as reliable criteria. This
interpretation is not what I intended. I reject each as the
sole or overriding criterion for judging any theory's value.
Moreover, my concern about causal accounts was raised
in the context of comparing teleological and causal expla-
nations (which Steele deems to be a tenuous distinction
anyway). I would consider predictive power and causal
understanding to be two of several criteria, however, for
judging the validity of optimality models (as well as other
kinds).

As I note later in the target article "each optimality
principle . . . begs for an associated process explanation
that describes causally, within the constraints of an orga-
nism or system, how it operates." It is this claim that
Miller deems "one of Schoemaker's most central sen-
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tences," whereas Day an & Oberlander cite the same
sentence as an illustration of confusing levels of explana-
tion. Both Cabaeac and Miller argue explicitly for a
dynamic criterion - survival or fitness for example - to
judge optimality. Miller develops this view most fully,
proposing two criteria: (1) dynamic adaptiveness concern-
ing short-term behavior as the system approaches its
goal(s), and (2) historical adaptation referring to long-term
selective dynamics that gave rise to the system in the first
place. In Miller's view, true optimality (as opposed to
apparent optimality) must evolve through a trial and error
process that undergoes selection and is as such ex-
clusively applicable to dissipative systems. Although it is
appealing, I find this view too narrow as it excludes the
kind of "designed optimality" characteristic of the sci-
ences of the artificial (Simon 1981).

I criteria. So how should we judge an extremum
or optimality principle in the physical (or any other)
sciences? My criteria would include (1) how well it pre-
dicts or explains existing data, (2) whether it generates
useful new hypotheses that are subsequently validated,
(3) whether it can be confirmed by more fundamental
process theories, (4) how elegant or simple it is, and (5)
how computationally tractable it is. The need for a pro-
cess perspective (as opposed to black box models) was
especially emphasized by Cabaeae., Oavison, Miller,
Sliafir, Stolarz-Fantino & Fantino.

Bookstele further insists that the maximand should be
independently measurable, as in the case of Fermat's
principle of least time. I subsume this under criterion (1),
concerning predictability (and thus implicitly its testa-
bility). In Schoemaker (1984), however, I examined
Bookstein's concern in more detail using Campbell's
(1970) conceptualization of a scientific theory. In Camp-
bell's view, a scientific theory consists of two sets of
propositions, one concerning the hypothesis and the
other concerning the theory's dictionary. For example,
consider Campbell's hypothetical theory for the law that
in metals the ratio of resistance and temperature remains
constant.

Let the hypothesis be that (1) u, v, and w are indepen-
dent variables, (2) a and b are constants, and (3) c and d
are dependent variables with c = d. Let the dictionary
define the resistance of metals as R = (c2 + dF)a and their
temperature as T = cdlb. This permits us to postulate the
above ratio law, since

R/T = (c2 + dz)ab/cd = 2c2ab/cd = 2ab = constant

Nonetheless, this contrived theory of a correct law is
without value. The reason is that the variables and con-
stants are not independently measurable, but only in
combination (as R or T). However, if u had been identi-
fied as, say, time and were also to appear in the other
formulae, then this theory might be testable. For exam-
ple, Boyle's gas law is valuable because its hypothesis
contains propositions that are analogous to observable
variables or principles. Such independent measurability
is to Campbell the essential characteristic of a theory's
value.

The criterion of testability can also be subsumed under
the criterion of plausibility, to which the target article
explicitly refers. Byree examines the plausibility criteri-
on in greater detail and finds it more a negative than

positive heuristic. Because I agree with many of his
observations, the above criterion set seems more appro-
priate. Note, however, that a full-fledged, general theory
and justification of criteria to judge optimality models
would require a separate article.

2B Different sciences reexamined

Physical sciences. The intriguing observation is offered
by Toda (who in midcareer switched from physics to
psychology) that physicists are optimizers in their inten-
tions and search for truth, beauty, and simplicity but that
their theories are generally not of the optimizing kind.
Sober further questions my equation of extremum prin-
ciples with those of optimality. Indeed, it is true that any
assertion about optimality contains subjective, evaluative
elements. What I suggested in the target article is that
such principles as Fermat's may gain in stature if their
maximands are plausible or desirable. It is presumably a
good thing for light to travel in the least amount of time
(we would all wish to do so, leaving sightseeing aside). In
addition, who can argue with the beauty and utility of
being efficient (which may be Nature's greatest virtue).
Obviously, I am anthropomorphizing and wonder to what
extent this all too human tendency affects physical scien-
tists' judgments about the appeal and value of their
extremum principles (quite apart from historical and
religious remnants). It should also be noted, however,
that such aesthetic appeals do not apply to all extremum
principles. The law of maximum chaos (entropy) would be
abhorred by most good citizens (teenagers excepted).
Similarly, weather systems or balloons equalizing pres-
sure may leave most of us quite cold.

Biology. The epistemological status of extremum prin-
ciples for living systems is more difficult to assess. Daly
suggests that even though natural selection has no goal(s)
per se (I agree), it brings forth organisms that do have
goals and purposes. This, in Daly's view, is the funda-
mental distinction between living and lifeless systems.
Yet it remains unclear why this distinction is deep (i.e.,
one of kind rather than of degree). Suppose we construct
an artificial world consisting of robots that undergo un-
natural selection. Assume the robots exhibit genetic vari-
ance (in their programs), undergo random mutation, can
mate and reproduce with heritability, and are differen-
tially terminated depending on some arbitrary traits or
behavioral features. Why, when, and how would pur-
poses develop in these machines? And how would we
recognize these purposes as being distinct from causes,
reflexes, or other conditions?

Such a simulated world could nicely manipulate how
much mutation is neutral - akin to Kimura's (1989)
genetic drift - and to what extent selection occurs at the
population, organism, and genome levels. This way we
could test how well biologists who are blind with respect
to the design parameters can infer the deeper laws of this
ecosystem. Although Daly faults me for distinguishing
various levels of selection, arguing that none of the
authors cited accepts species selection, it lies at the heart
of Eldredge & Gould's (1972) punctuated equilibria view
of evolution. In addition, at least one of the authors cited
explicitly wrote: "The entities which are subject to evolu-
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tion by natural selection may not be individual organisms,
but either larger entities (populations) or smaller ones
(genes, or groups of genes)" (Maynard Smith 1986, p. 7).
Indeed, the possibility of species or population selection
seems hard to rule out. Suppose we annihilate ourselves
as well as several other species in some vast nuclear war
with the help of presumably "optimal" computers.
Wouldn't that constitute species level selection?

The notion that through natural selection true op-
timizers may evolve connects with Miller & Zucker's
general questions as to: "How it is possible that nature is
computing all these optima?" They emphasize that op-
timal solutions are often expensive to calculate and at
times impossible to find with certainty. For example,
many animals - in their search for food or mates -
encounter various dynamic programming problems that
are known to rise exponentially in complexity as the
number of variables or states increases (see Houston &
McNamara 1988). Indeed, some will be NP-hard, mean-
ing that they are not polynomially bounded, with no
guaranteed closed form solutions.

One answer is provided by Helweg & Roitblat, who
suggest that neural networks may be up to a task that has
eluded operations research so far. To quote: "Although
each element in the network has very limited computa-
tional capacity, a three-layer network can compute any
arbitrary function" (Hecht-Nielsen 1987). Another is to
consider the optimality models "as if," not to be taken
literally. The interesting dimension of biological systems,
however, is that true optimality can emerge (in the sense
of adaptive fitness or survival). Thus, we might add to the
aforementioned criteria that for biological optimality the
assumptions underlying natural selection apply. That is,
genetic variance, heritability, random mutation, selec-
tion pressure, and stable convergence over many genera-
tions would prima facie favor true or inherent optimality
(in the sense of Miller's adaptive criteria). Alternatively,
we could consider this a process explanation (to accom-
pany the optimality explanation), so that it is not so much
a new criterion (relative to the earlier list) as a more
specified one.

Social sciences. With respect to full consciousness, I
suggest in the target article that optimality may even be
more plausible because of foresight, learning, reflective
intelligence, and free choice. I also note, however, that
freedom of choice permits suboptimal behavior and also
introduces vastly increased complexity. Daly argues that
at the societal level, Darwinian processes are less likely to
be operative. In his words,

Sociological and anthropological functionalisms have
generally failed miserably, for reasons transparent to a
Darwinian: There is no rationale for expecting societies
to function as if they have "purposes," because there is
no process that could plausibly provide them with the
sort of integrated "designs" and goal-directedness that
selection gives to individual organisms.

Miller similarly questions the value of optimality argu-
ments in economics because of the absence of cumulative
selection. What is lacking, he argues, is heritable varia-
tion and increased numerosity of offspring for those who
are fitter.

This criticism can be responded to at two levels: One in
terms of fit with the assumptions underlying natural
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selection; the other by noting (as BylaecS and Shafir do)
that in humans optimality can also be achieved through
forethought and intelligence. It is interesting that there
seems to be a tradeoff between the argument for biolog-
ical optimality and that for designed optimality. The less
intelligent we assume humans to be, the more persuasive
the biological argument will be and the less persuasive
the design one. Consider, for example, the view of
organizations put forth by Cyert and March (1963) or
more recently by Nelson and Winter (1982). These mod-
els assume that firms have limited routines for coping
with new circumstances and that new routines emerge
slowly through a process of local search. In such a world,
economic selection is likely to exert a considerable force.
New generations of managers are burdened with the
views and practices of preceding ones (a form of cultural
and organizational inheritance). Consequently, they
adapt poorly to new challenges, thereby permitting more
suitable organizations to flourish and win out. Organiza-
tional ecology, as a subfield of sociology, explicitly adopts
this view, with considerable empirical support (see
Hannan & Freeman 1989). As such, bounded rationality
may favor biological optimality arguments.

If, in contrast, we postulate hyperrationality, as econo-
mists often prefer, arguments centering on habit, incre-
mentalism, and selection lose power, whereas those of
designed optimality gain. Firms will hire the best minds
to work on those problems that truly matter, and op-
timality will often be explicitly designed for. Examples
include linear programming applications in oil refineries
or airline scheduling, efficient portfolio allocations in
financial management, or optimal forecasting or time-
series. In this view, rationality is a purchaseable com-
modity that will flow to where It will do the most good (an
Instance of Coase's 1960 theorem). Firms will buy and
develop intelligence to an optimal (but not maximal)
degree, that is, to the point where the marginal cost of
becoming still smarter equals its expected benefit. Note
that in such a world surplus profit-seeking is doomed from
the start.

The social sciences also suffer from ambiguity sur-
rounding the notion of rationality. As Wierzbicki justly
points out, rationality is not necessarily equivalent to
utility maximization. First, there is the Issue of cost and
effort. Seemingly suboptimal decision rules, for example,
Simon's (1957) satisficing or other noncompensatory
screening methods may appear optimal when one takes
cognitive and computational costs into account (see John-
son & Payne 1985). Since some of these costs are unobser-
vable or hard to measure, they can become powerful
fudge factors in ex post facto rationalizations. Second,
philosophical disagreements remain over different kinds
of rationality and the appropriate criteria to adjudicate
them. Some theorists require no more than subjective
rationality (just within the person's worldview and be-
liefs), whereas others favor adaptive rationality (linked to
survival) or procedural rationality (adapted to our cog-
nitive limits).

3, Human optimality

Economic man* The complexities of wielding the sword of
optimality wisely (to borrow Wierzbicki's metaphor) are
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especially noticeable in the rational-economic man tradi-
tion. For nearly a century, economists have faithfully
followed Pareto's (1897) advice that "once we have ob-
tained a photograph of his taste, . . . the individual may
disappear." Being among the most advanced of the social
sciences, economics has reduced man to a mere subscript
in mathematical equations (see Georgescu-Roegen 1971).
Having no choice but to maximize his expected utility
(Scitovsky 1976), basic preferences are the only thing
researchers need to predict economic man's behavior.
[See also Caporael et al.: "Selfishness Examined: Cooper-
ation in the Absence of Egoistic Incentive" BBS 12(4)
1989.]

This robotic image, further endowed with nearly infi-
nite problem solving capacity, has apparently served the
masters of rationality well. Their brain child (i.e., the
fiction called economic man) has become almost as ra-
tional as the brightest of his economic parents. For
example, whereas initially he could only "maximize" his
utility under fixed search rules (Stigler 1961), today he
knows how to use "more optimal" variable search rules
(Rothschild 1974). Or, whereas once he could be fooled
by governmental policies entailing monetary and fiscal
levers, today his rational expectations largely nullify
these regulatory interventions (Lucas 1980).

The above caricature of economic man is not meant to
belittle pathbreaking work in economics, but to highlight
the inherent difficulties encountered when using op-
timality principles in the social realm. The first dilemma
concerns the discrepancy between the IQ of economic
man now versus his IQ even a few decades ago. The
second dilemma is that as economic man becomes more
firmly rooted, and indeed makes colonizing excursions
into neighboring terrain (law, crime, animal behavior,
etc.), his sister discipline of psychology is mounting a
vigorous attack on the behavioral validity of the underly-
ing assumptions (see Hogarth & Reder 1986).

The standard reply revolves around issues of com-
parative advantage, methodological preference (positiv-
ism), and the lack of strong alternative theories. Psycho-
logical man, it is usually countered, is still too frail, too
unaxiomatized, and just not "together enough" to shoul-
der the burden of mathematical aggregation from indi-
vidual to market behavior. It is presumed that such
aggregation should follow the same path of mathematical
rigor, generality, and tractability that characterizes the
elegant closed-form development of economic man. The
real problem, however, is that economic man is limping.
Somehow his sterile development, in an environment
devoid of real-world contamination, has resulted in an ill-
adjusted adult, whose beauty rests mostly in the eyes of
his parents.

Decision scienceSe If we abandon the "as if" perspective
and get down to actual, deliberate optimization of real-
world problems, additional challenges arise. As Miller &
Zucker emphasize, many of life's optimization problems
seem hopelessly complex, although Clark (target article,
this issue) offers some rays of hope. Furthermore, insofar
as human preferences or beliefs are to be measured,
optimization sciences run into precisely the problems
they are meant to cure, namely, bounded rationality.
This problem is especially acute in decision analysis,
which requires utility functions as one of its subjective

inputs. The problem is that of obtaining preference judg-
ments that satisfy the axioms (e. g., those of von Neumann
& Morgenstern 1947) on which the entire normative
apparatus rests.

To illustrate, let me mention briefly some of my own
work with John C. Hershey on utility measurement. We
ask subjects to provide a certainty equivalence (CE)
judgment for a simple gamble - a 50-50 chance of getting
$0 or $200, for example. Suppose our subject provides a
CE of $80 (i.e., being indifferent to getting $80 or the
gamble). A week or so later, we present the subject with a
choice between $80 for sure versus a 40% chance of
getting $200 and a 60% of getting $0. This time, however,
we ask for a probability equivalence (PE), that is, an
adjustment of the 40% chance to a level that brings about
indifference. Expected utility (EU) theory, as well as any
holistic choice model with a one-to-one mapping between
money and utility, would predict an answer of 50%
(because that was the initial indifference state). In our
experiments, we find that significantly more subjects give
a response above than below 50% for this and similar
problems (see Hershey & Schoemaker 1985). In subse-
quent work (Schoemaker & Hershey 1991), we trace such
CE-PE discrepancies to PE reframing, regression toward
the mean, and anchoring with insufficient adjustment
(see also Johnson & Schkade 1989).

Probability equivalence (PE) reframing here refers to
subjects translating the gamble downward in the PE
mode, as though it were a choice between $0 for sure
versus a 40% chance of gaining $100 and a 60% chance of
losing $100. That is, outcomes are recoded relative to the
sure amount, which serves as the new reference point or
status quo. This happens only in the PE mode where the
sure amount is kept fixed (whereas it varies in the CE
mode). The psychological shift from the gain to the mixed
payoff domain typically induces an increase in risk-aver-
sion, compatible with prospect theory's value function
shape (see Kahneman & Tversky 1979). Without under-
standing such psychological evaluation biases, it becomes
very difficult to arrive at reliable utility measurements.
Unfortunately, CE-PE discrepancies are just one of sev-
eral potential obstacles in utility encoding (see Hershey
et al. 1982).

The point to be made is that designing for optirnality is
by no means simple, for mathematical/computational,
philosophical, and psychological reasons (see Kleindorfer
et al. 1991 for elaborations). So whereas I would agree
with Baron and Eienooy Kae about the potential value of
optimality principles in providing normative guidance, I
and others (e.g., Davisoe and Levine) are less sanguine
about their current value (see also Bell et al. 1989).
Questions of uniqueness (or decisiveness), lack of consen-
sus and limited operationally continue to plague the
engineering of rational choice (see also March 1988).

In summary, the optirnality game is a difficult one to
play well, both descriptively and prescriptively. Unlike
some other research programs, it can easily degenerate
into tautology or can otherwise retard scientific progress.
In the instrumentalist view of SaMie5 optimality may be
little more than a tool of science, but as Mazur and others
have emphasized, it can easily be abused.
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ERRATUM
Paul Bloom
Department of Psychology, University of Arizona, Tucson, AZ 85721
In my Response to the target article, "Natural Language and
Natural Selection," co-authored by Steven Pinker and Paul
Bloom (BBS 13(4):769), the journal printed the following sen-
tence, "Rather, different mutations are stored independently in
different lineages, and recombination brings them together to
form vast numbers of new combinations, in people, in their
descendents," in error. The sentence should have read:
"Rather, different mutations are stored independently in differ-
ent lineages, and recombination brings them together to form
vast numbers of new combinations, in parallel, in their
descendents."
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